## **APPENDIX G**

Appendix G.1: Comparative Thalweg Profile and Cross-section Plots for the Sediment Removal Alternatives

Appendix G.2: Mapping Showing Extents of the Sediment Removal Alternatives

October 20, 2015

Contract No. IBM09D0006 Order No. IBM14T0016

## Appendix G.1

Comparative Profile and Cross-section Plots for the Sediment Removal Alternatives







Figure G.1.1. Existing (Base Model) and excavation thalweg profiles at Problem Location 1.



Figure G.1.2. Typical cross section at Problem Location 1 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 527574.7).

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report





Figure G.1.3. Typical cross section at Problem Location 1 showing the existing (Base Model) channel geometry and excavated geometry under the short and long excavation scenarios (River Station 527320.4).



Figure G.1.4. Typical cross section at Problem Location 1 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 518915).





Figure G.1.5. Typical cross section at Problem Location 1 showing the existing (Base Model) channel geometry and excavated geometry under the short and long excavation scenarios (River Station 518772.4).



Figure G.1.6. Existing (Base Model) and excavation thalweg profiles at Problem Location 2.





Figure G.1.7. Typical cross section at Problem Location 2 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 454174.4).



Figure G.1.8. Typical cross section at Problem Location 2 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 452614.1).





Figure G.1.9. Typical cross section at Problem Location 2 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 448155.2).



Figure G.1.10. Typical cross section at Problem Location 2 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 447654.5).





Figure G.1.11. Existing (Base Model) and excavation thalweg profiles at Problem Location 3.



Figure G.1.12. Typical cross section at Problem Location 3 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 434118.9).

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report





Figure G.1.13. Typical cross section at Problem Location 3 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 433704.5).



Figure G.1.14. Typical cross section at Problem Location 3 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 433356.2).





Figure G.1.15. Existing (Base Model) and excavation thalweg profiles at Problem Location 4.



Figure G.1.16. Typical cross section at Problem Location 4 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 415476.8).





Figure G.1.17. Typical cross section at Problem Location 4 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 412284.1).



Figure G.1.18. Typical cross section at Problem Location 4 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 400857.9).





Figure G.1.19. Typical cross section at Problem Location 4 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 400659.3).



Figure G.1.20. Existing (Base Model) and excavation thalweg profiles at Problem Location 5.





Figure G.1.21. Typical cross section at Problem Location 5 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 376830.4).



Figure G.1.22. Typical cross section at Problem Location 5 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 376330).





Figure G.1.23. Typical cross section at Problem Location 5 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 372339.6).



Figure G.1.24. Typical cross section at Problem Location 5 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 371836.6).





Figure G.1.25. Existing (Base Model) and excavation thalweg profiles at Problem Location 6.



Figure G.1.26. Typical cross section at Problem Location 6 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 215011.7).

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report





Figure G.1.27. Typical cross section at Problem Location 6 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 212468.2).



Figure G.1.28. Typical cross section at Problem Location 6 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 210162.5).





Figure G.1.29. Existing (Base Model) and excavation thalweg profiles at Problem Location 7.



Figure G.1.30. Typical cross section at Problem Location 7 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 86460).

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report





Figure G.1.31. Typical cross section at Problem Location 7 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 85464.6).



Figure G.1.32. Typical cross section at Problem Location 7 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 83444.4).





Figure G.1.32. Typical cross section at Problem Location 7 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 79425.6).



Figure G.1.33. Existing (Base Model) and excavation thalweg profiles at Problem Location 8.





Figure G.1.34. Typical cross section at Problem Location 8 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 42287.4).



Figure G.1.35. Typical cross section at Problem Location 8 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 41495.8).





Figure G.1.36. Typical cross section at Problem Location 8 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 40669.1).



Figure G.1.37. Existing (Base Model) and excavation thalweg profiles at Problem Location 9.





Figure G.1.38. Typical cross section at Problem Location 9 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 11460.1).



Figure G.1.39. Typical cross section at Problem Location 9 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 10483.52).





Figure G.1.40. Typical cross section at Problem Location 9 showing the existing (Base Model) channel geometry and excavated geometry under the localized, short and long excavation scenarios (River Station 9006.36).



## Appendix G.2

Mapping Showing Extents of the Sediment Removal Alternatives







Figure G.2.1. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 1 (Sheet 1).





Figure G.2.2. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 1 (Sheet 2).

G.2.2





Figure G.2.3. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 2 (Sheet 1).





Figure G.2.4. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 2 (Sheet 2).





Figure G.2.5. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 2 (Sheet 3).





Figure G.2.6. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 2 (Sheet 4).





Figure G.2.7. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 3 (Sheet 1).





Figure G.2.8. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 3 (Sheet 2).





Figure G.2.9. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 4 (Sheet 1).





Figure G.2.10. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 4 (Sheet 2).




Figure G.2.11. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 4 (Sheet 3).





Figure G.2.12. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 4 (Sheet 4).





Figure G.2.13. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 4 (Sheet 5).





Figure G.2.14. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 4 (Sheet 6).





Figure G.2.15. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 5 (Sheet 1).





Figure G.2.16. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 5 (Sheet 2).





Figure G.2.17. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 5 (Sheet 3).





Figure G.2.18. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 5 (Sheet 4).





Figure G.2.19. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 5 (Sheet 5).





Figure G.2.20. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 6 (Sheet 1).





Figure G.2.21. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 6 (Sheet 2).





Figure G.2.22. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 6 (Sheet 3).





Figure G.2.23. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 6 (Sheet 4).





Figure G.2.24. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 7 (Sheet 1).





Figure G.2.25. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 7 (Sheet 2).





Figure G.2.26. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 7 (Sheet 3).





Figure G.2.27. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 7 (Sheet 4).





Figure G.2.28. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 8 (Sheet 1).





Figure G.2.29. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 8 (Sheet 2).





Figure G.2.30. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 8 (Sheet 3).





Figure G.2.31. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 9 (Sheet 1).





Figure G.2.32. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 9 (Sheet 2).





Figure G.2.33. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 9 (Sheet 3).





Figure G.2.34. Mapping showing extents of the localized, short and long sediment-removal alternatives at Problem Location 9 (Sheet 4).



## **APPENDIX H**

**Conceptual Layouts for Arroyo Sediment Traps** 

## October 20, 2015

Contract No. IBM09D0006 Order No. IBM14T0016

## Appendix H

Conceptual Layouts for Arroyo Sediment Traps







Figure H.1. Conceptual layout of sediment trap for Tierra Blanca Creek at Problem Location 1.





Figure H.2. Conceptual layout of sediment trap for Green Arroyo at Problem Location 1.





Figure H.3. Conceptual layout of sediment trap for Sibley Arroyo at Problem Location 1.





Figure H.4. Conceptual layout of sediment trap for Thurman II Arroyo at Problem Location 2.





Figure H.5. Conceptual layout of sediment trap for Thurman I Arroyo at Problem Location 2.





Figure H.6. Conceptual layout of sediment trap for Placitas Arroyo at Problem Location 2.





Figure H.7. Conceptual layout of sediment trap for Garcia Arroyo at Problem Location 3.





Figure H.8. Conceptual layout of sediment trap for Rock Canyon at Problem Location 5 (see also Figure 23 in the main report).





Figure H.9. Conceptual layout of sediment trap for Horse Canyon Creek at Problem Location 5.




Figure H.10. Conceptual layout of sediment trap for the unnamed arroyo draining Subarea 101 at Problem Location 7.





Figure H.11. Conceptual layout of sediment trap for the unnamed arroyo draining Subarea 102 at Problem Location 7.





Figure H.12. Conceptual layout of sediment trap for the unnamed arroyo draining Subarea 103 at Problem Location 7.





Figure H.13. Conceptual layout of sediment trap for the unnamed arroyo draining Subarea 104 at Problem Location 7.



## **APPENDIX I**

**Conceptual Layouts for Low-elevation Spur Dikes** 



### Appendix I

Conceptual Layouts for Low-elevation Spur Dikes







Figure I.1. Conceptual layout of low-elevation spur dikes at Problem Location 4 (Sheet 1).





Figure I.2. Conceptual layout of low-elevation spur dikes at Problem Location 4 (Sheet 2).





Figure I.3. Conceptual layout of low-elevation spur dikes at Problem Location 4 (Sheet 3).





Figure I.4. Conceptual layout of low-elevation spur dikes at Problem Location 5 (Sheet 1; see also Figure 24 in the main report).





Figure I.5. Conceptual layout of low-elevation spur dikes at Problem Location 5 (Sheet 2; see also Figure 26 in the main report).





Figure I.6. Conceptual layout of low-elevation spur dikes at Problem Location 7 (Sheet 1).





Figure I.7. Conceptual layout of low-elevation spur dikes at Problem Location 7 (Sheet 2).





Figure I.8. Conceptual layout of low-elevation spur dikes at Problem Location 7 (Sheet 3).





Figure I.9. Conceptual layout of low-elevation spur dikes at Problem Location 8 (Sheet 1).





Figure I.10. Conceptual layout of low-elevation spur dikes at Problem Location 8 (Sheet 2).





Figure I.11. Conceptual layout of low-elevation spur dikes at Problem Location 9.



# **APPENDIX J**

Mapping Showing Extents of Island Destabilization and Vegetation Removal Treatments

#### October 20, 2015 Contract No. IBM09D0006 Order No. IBM14T0016

#### Appendix J

Mapping Showing Extents of Island Destabilization and Vegetation Removal Treatments







Figure J.1. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 2 (Sheet 1).





Figure J.2. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 2 (Sheet 2).





Figure J.3. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 2 (Sheet 3).





Figure J.4. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 2 (Sheet 4).





Figure J.5. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 2 (Sheet 5).





Figure J.6. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 4 (Sheet 1).





Figure J.7. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 4 (Sheet 2).





Figure J.8. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 4 (Sheet 3).



Figure J.9. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 4 (Sheet 4).





Figure J.10. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 4 (Sheet 5).





Figure J.11. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 4 (Sheet 6).





Figure J.12. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 9 (Sheet 1).





Figure J.13. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 9 (Sheet 2).





Figure J.14. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 9 (Sheet 3).





Figure J.15. Aerial photography showing extents of features treated with island/bar destabilization and vegetation removal at Problem Location 9 (Sheet 4).


Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report

# **APPENDIX K**

**EBID River Sediment Management Alternatives Report Excerpts** 



# **River Sediment Management Alternatives**

Proposed by Elephant Butte Irrigation District



## To US Section International Boundary and Water Commission C/O Elizabeth Verdecchia Natural Resources Specialist 4171 N. Mesa St C-100 El Paso, TX 79902



# Table of Contents

100

| Introduction and History                                                      |
|-------------------------------------------------------------------------------|
| Westside and Eastside Main Canal sediment sluice structures                   |
| Sluiceway concept overview:                                                   |
| Proposed check and sluiceway design:                                          |
| Sluiceway and check structure design parameters:11                            |
| Leasburg Dam Heading Trash Rack                                               |
| Trash rack concept overview:                                                  |
| Proposed trash rack design:                                                   |
| Potential trash rack designers:14                                             |
| Mesilla Dam Gate Automation                                                   |
| Dam gate automation concept overview:17                                       |
| Appendix 1: Sediment management letter from Commissioner Drusina 19           |
| Appendix 2: EBID Comments to IBWC's Channel Maintenance Plan                  |
| Appendix 3: Sluiceway and check structure design                              |
| Appendix 4: EBID Rights of Way documentation for Westside and Eastside Canals |

## Introduction and History

Sediment management within the Rio Grande Channelization Project (RGCP) is critical to channel flood capacities and efficient deliveries to the two United States irrigation districts and Mexico. Sediment management within the RGCP must compare historical maintenance and recent neglect for the sediment accumulation by the US Section of the International Boundary and Water Commission (IBWC) which is in charge of maintenance of the channel in the RGCP.

Since the Canalization Project began, the IBWC engaged in multiple preventive measures and annual sediment removal for sediment management within the river channel. To reduce the need for mechanical dredging, the IBWC constructed five watershed dams for soil and water conservation and to reduce the amount of flood-borne sediments reaching the river channel. These projects have been successful in reducing the sediment load from several major arroyos. Other arroyos and watersheds were not suitable for the construction of dams and therefore remain as wild arroyos which bring in massive amounts of sediment to the channel during major storm events. EBID is in support of additional projects to keep sediment upstream of the river channel as indicated the letter dated April 10, 2014 from IBWC Commissioner Edward Drusina to the Interstate Stream Commission which is included as Appendix 1.

The Rio Grande Project has historically relied on mechanical removal of sediment from the river channel by the IBWC. The IBWC engaged in annual maintenance and sediment removal throughout the channelization Project to ensure channel flood capacities and efficient irrigation flow deliveries. Sediment was removed annually from problem areas using dredging and excavation to maintain the design grade and capacities of the river channel. Since approximately 1997, the IBWC has ceased sediment removal in response to threatened litigation over endangered species<sup>1</sup>. As indicated in this reference, the sediment accumulation has increased with the current drought because the smaller releases from Project storage have less sediment transport capacity than full releases. Currently the sediment loading on the river continues unmitigated. EBID's formal comments to this reference is included in Appendix 2 of this proposal.

Within the Channel Maintenance Plan, support was included for alternative measures, which are expanded within this proposal. These proposed improvements to EBID's interaction with IBWC's river channel are intended to compliment future river channel maintenance. However, river channel maintenance and annual sediment removal by the IBWC will remain necessary due to the issues expounded in EBID's comments to the Channel Maintenance Plan. It is important to mention that Audubon New Mexico, through its representative, Beth Bardwell have also expressed her support for the alternatives proposed within this document.

<sup>&</sup>lt;sup>1</sup> USIBWC Rio Grande Canalization Project, River Management Plan, DRAFT, International Boundary, Water Commission, December 12, 2013.

EBID's diversion dams were designed and built with some consideration to sediment exclusion. For this reason, the invert of the canal heading gates were engineered higher than the invert of river sluice gates thus preventing sediment carryover into the diverted water while allowing for efficient passage of sediment downstream. However, lack of channel maintenance has caused aggradation of the bed channel so that presently sediment increasingly flows directly into the canal heading.

Once the water from the Rio Grande is diverted at one of EBID's diversion dams for irrigation the high level of suspended sediments in the river water causes difficulty in delivering water to our agricultural constituency because the irrigation canals are aggrading at an accelerated pace, causing reductions in capacity and freeboard. Also, since most of the irrigation within the Rio Grande Project is done by flood irrigation techniques, increased sediment loads translate into negative impacts for on-farm efficiencies. Farm fields, which are aggraded by suspended sediment, have decreased available hydraulic head to deliver water swiftly and evenly across the farm field. Aggradation of a farm field causes an increased disparity of infiltration from the near end of the field to the far end of the field which translates into decreased irrigation efficiency.

This document includes three alternative sediment management proposals. First, new check structures with a sluice way near the two Mesilla Dam headings will reduce the sediment transport into our agricultural irrigation canals. The proposed structures are intended to reroute diverted sediment back to the river channel for both EBID's Westside and Eastside Main Canals. Second, we propose a trash rack to be installed immediately upstream of the Leasburg Dam's diversion and sluice gates to improve existing sediment sluicing for the Leasburg Main Canal and operation of the sluice gates and diversion gates. Third, two additional automated electric operators for the Mesilla Dam, to compliment the two already installed, will promote hydraulic mobilization of sediment and reduce accumulation upstream of the diversion dam.

These proposal items were presented to a group of stakeholder engineers and scientists who were called to meet on March 27, 2013 to discuss river management issues. The purpose of this presentation was to communicate the river sediment issues which are, to a great extent, a result of the lack of channel maintenance by the IBWC. Since that time this written proposal was requested by Mrs. Elizabeth Verdecchia as part of the Record of Decision (ROD) working group. In our opinion, the discussions within the ROD working group has been cooperative and informative for most stakeholders but have not proven fruitful for the technical issues that EBID faces due to the lack of maintenance by IBWC.

In summary, EBID raises two major concerns due to the lack of channel maintenance by the IBWC: channel flow/delivery efficiencies and prevention of sediment which reach the canal system and eventually farmers' fields. This proposal only addresses mitigation of sediment load delivered to EBID's canals. As explained within the Channel Maintenance Plan written by IBWC, and explained in greater detail within EBIDs comments, it is a statutory responsibility of the

IBWC to efficiently deliver water to the two irrigation districts within the United States as well as Mexican farmers.

These proposed improvements to EBID's interaction with IBWC's river channel are intended to compliment future river channel maintenance and will allow for more efficient deliveries and should greatly reduce annual sediment removal within the irrigation district. The cooperation which encouraged this proposal to be submitted to the IBWC is a testament to IBWC's renewed willingness to address the needs of its US constituents through the ROD working group.

## Westside and Eastside Main Canal sediment sluice structures

#### Sluiceway concept overview:

It is critical for efficient water conveyance to prevent excessive sediment from entering the canal system. Canal headings are the most logical locations to engineer solutions to this everincreasing problem. The Elephant Butte Irrigation District proposes that new check structures be constructed downstream of the headings of the Westside and Eastside Main Canals. The purpose of these check structures is to reduce the sediment load into the main canals by actively ejecting sediment immediately upstream of the checks. As proposed here, each structure entails an adequate width of overflow gates to allow the current canal design capacities to flow past while maintaining a metering structure allows flow from the canal bottom to be bypassed back to the river. The transition of the canal floor to the check structure is a quarter circle vertical ledge which induces settling sediments in the canal to be returned to the river via the sluice gates. Figure 1 shows a 3D view of the conceptual design for these structures is included in Appendix 3 of this proposal.





This concept of a sluiceway with recessed upstream section was first implemented by the Bureau of Reclamation near the heading of EBID's Leasburg Main Canal. This location, approximately 2,950 feet downstream of the Leasburg dam heading is known as the Leasburg Canal Wasteway #1 or the "electric wasteway." In 2012, a check structure was installed immediately downstream of the electric wasteway in coordination with the Dona Ana Mutual Domestic Water Users Association. The installation of this structure served multiple purposes: provide improved sluicing capabilities of the wasteway, serve as the new heading for the Leasburg canal, therefore reducing repetitive operational demands on the Leasburg Dam heading gates, and to ensure consistent water surface elevation for a pump box to be installed in the future upstream of the check structure for a surface water treatment plant planned to be built nearby. Pictures of the new Leasburg "first check" and electric wasteway are shown as Figure 2 and 3. Since 2012, the improved check and sluiceway have proven helpful with reducing the amount of sediment entering the canal system.



Figure 2. Leasburg Canal "first check" and "electric wasteway"



Figure 3. Panoramic photograph of the Leasburg Canal from the new "first check" looking upstream

Proposed check and sluiceway design:

The proposed structures, one for the Westside and Eastside Main downstream of their Mesilla Dam headings respectively, include a check structure, similar to most other check structures throughout the irrigation district, and a recessed sluiceway upstream of the check structure. This design allows the new check structure to become the heading and the rated/meterable delivery point for the irrigation district's main canal. For the purposes of this proposal, these structures are referred to as the "first check" of each canal. The Westside Main Canal has a current design capacity of 600 cubic feet per second (cfs) and the Eastside Main Canal has a current design capacity of 350 cfs. Each of these canals are designed to serve tens of thousands of acres of land.

The sluicing culverts upstream of the check structure shown here entail two 36 inch "turn-out" style gates also known as an "Armco" or "Fresno Valve" style of circular sliding gate. A radial gate style for the sluiceway, similar to the Leasburg Dam electric wasteway, is also an ideal option (depending on negotiations with the IBWC pertaining to the distance that the sluicing structure can project out into the levee road). The sluice gate(s) are recessed such that the invert of the opening is flush with this upstream section and at least 1 foot below the check structure invert. The trapezoidal canal section upstream of the check structure is to have a slope of at least 0.001 which continues to a quarter circle ledge, just upstream of the check structure. This ledge directs the heavy bed load toward the sluice gates, and away from the heading gates on the check structure. The canal section upstream of the check structure transitions from a trapezoidal section to vertical wall rectangular section. A 3-D cross section view of the proposed design is shown in Figure 4.





The locations chosen for the new "first checks" is based on the ability to route the sluiceway flows and sediment back to the Rio Grande. It is important to locate these check structures as far downstream as practical to allow settling time within the canal so that the maximum possible sediment is sluiced back to the river. The preferred locations are approximately 1700 feet and 600 feet downstream of the Mesilla Dam heading gates. The Westside first check location needs to be as far downstream as possible while avoiding crossing private property. The eastside orientation is more limited, and the best option is to obtain an easement through the neighboring pecan orchard at a location already used as a road. It is proposed that two 48" pipes or 36"x36" concrete box culverts are buried beneath the farm road ending in two concrete box culverts through the east side river levee. This arrangement of buried culverts does not impede the use of the road for its intended purpose. It is proposed that both sluiceway channels have at least a 0.001 ft/ft slope. To assist with evaluation of the proposed design, Table 1 and Table 2 below show design parameters for the respective structures.

The gate style selected for these structures is a moveable overflow weir which can be raised and lowered to adjust flows. This gate style can be calibrated as a rated metering structure as proven by the Bureau of Reclamation<sup>2</sup>. The equation for metering flows using this style of gate is shown as Equation 1. This equation is simply a manipulation of Bernoulli's equation with calibration coefficients for weir flows.

$$Q = C_a C_e \frac{2}{3} \sqrt{2g} (b_c + K_b) (h_1 + K_h)^{1.5}$$
  

$$K_b = 0.00835 \text{ and } K_h = 0.003 \text{ (US units)}$$
  

$$b_c = \text{gate width (ft)}$$
  

$$h_1 = \text{head on gate (ft)}$$
  

$$C_a = 1.0333 + 0.003848\theta - 0.000045\theta^2$$
  

$$\Theta = \text{gate angle in degrees}$$

$$C_e = 0.002 \frac{h_1}{p} + 0.59$$

p = upstream water depth below the crest (ft)

Equation 1. Rating equation for overshot (movable weir) style check gate

The designed maximum elevation for the gate is the high water mark of the Mesilla Dam which is also the top of the existing river gates. The overflow gates serve as a rated structure for accurate flow measurement from the fully vertical position to where the gate is tilted down to a 40 degree position. The gates must have sufficient capacity to pass the entire normal canal flow

<sup>&</sup>lt;sup>2</sup> Bureau of Reclamation Water Measurement Manual: A Water Resources Technical Publication. Revised 2001. Washington DC: Government Printing Office. (Chapter 7, 13. Special Weirs, (e) Flow Measurement using an Overshot Gate)

while at the 40 degree position. Additional flow can be allowed to pass, in during emergencies by laying the gates down further. This increased water surface elevation for the portion of the canals upstream of the new first check to the dam heading gates requires the canal banks to be raised with compacted earthen material. The canal banks, and bottom of the structure walkway have a freeboard of at least 1.5 feet and the canal banks require a 3-4 inch gravel wearing surface to be added. Concrete lining upstream of the new check structures is included in the design to allow for reliable cleaning elevations and to reduce chances of canal banks breaching due to rodent activity.

The heading of the Del Rio Lateral currently diverts water from the Rio Grande, a few feet upstream of the Eastside Main Canal heading gates. The Del Rio Lateral then siphons under the Eastside Canal and heads south. Due to the proposed new placement of the Eastside Canal "first check," it will be a major improvement for this lateral to be simply diverted off the right/south bank of the Eastside Main Canal. The Del Rio Lateral heading is a 48" turnout gate which is pressurized by the water surface elevation of the proposed check structure.

The sluiceway channels have been designed for a flow of 400 cfs at the Westside Main Canal and 300 cfs for the Eastside Main Canal. This relatively large flow enables the irrigation district to flush a large amount of sediment and river flow without diverting more water than required for the irrigation system. In the future, a simple low-head hydropower station will be installed immediately upstream of each of the proposed check structures and sluiceways. The design flow of the sluiceway culverts is overdesigned to accommodate future hydropower implementation but no other accommodations for hydropower are requested. The raceway of the hydropower turbines will be routed to the culverts upstream of the river levee, preventing any additional work to the river levee. These future plans are mostly unrelated to this proposal but they must be considered in the present sluiceway flow design to be able to accommodate additional future flows.

The sluiceways channels/culvert are proposed to be two circular turnouts or a single radial gate into a concrete box, then two 3 foot x 3 foot concrete box culverts will extend to the levee and approximately 5 feet beyond the bottom toe of the river levee. It is important to mention that the concrete box at the beginning of the sluiceway channel need to be longer for a radial gate design to accommodate the pins and arms of the gate. If a box sized for a radial gate does not narrow the levee maintenance road/EBID canal maintenance road unacceptably, then a single radial gate is the preferred option for the sluiceway. From the end of the box culverts, a concrete channel prevents head cutting and erosion of the levees. The concrete channel is proposed to be 20 feet long and the downstream end of the proposed channel with an 8 foot cutoff wall to forestall head cutting erosion. An earthen channel takes the water to the main river channel from the end of the concrete channel. Energy dissipaters may be desirable within the concrete channel. Both the concrete channel and the earthen channel of the sluiceway beyond the levee are 5 feet deep and have a bottom width of 10 feet, with 2:1 side slopes. This channel design results in a 30 foot top width. Sluiceway and check structure design parameters:

| Elevation of river high water mark   | 3826.53 | feet (BOR datum) |
|--------------------------------------|---------|------------------|
| Invert of canal heading gates at dam | 3818.99 | feet (BOR datum) |
| Canal current capacity               | 600     | cfs              |
| Minimum canal slope                  | 0.001   | ft/ft            |
| Current canal top width              | 75      | feet             |
| Current canal bottom width           | 53      | feet             |
| Desired combined sluiceway capacity  | 400     | cfs              |
| EBID ROW width                       | 120     | feet             |
| Proposed distance from heading       | 710     | feet             |
| High water mark below dam            | 3819.11 | feet (BOR datum) |
| Distance to river channel            | 320     | feet             |

Table 1. Westside Canal new "first check" and sluiceway design parameters

Table 2. Eastside Canal new "first check" and sluiceway design parameters

| Elevation of river high water mark   | 3826.53 | feet (BOR datum) |
|--------------------------------------|---------|------------------|
| Invert of canal heading gates at dam | 3819.17 | feet (BOR datum) |
| Canal current capacity               | 350     | cfs              |
| Minimum canal slope                  | 0.001   | ft/ft            |
| Current canal top width              | 35      | feet             |
| Current canal bottom width           | 14.6    | feet             |
| Desired combined sluiceway capacity  | 300     | cfs              |
| EBID ROW width                       | 110     | feet             |
| Proposed distance from heading       | 1640    | feet             |
| High water mark below dam            | 3819.11 | feet (BOR datum) |
| Distance to river channel            | 650     | feet             |
| Invert Del Rio Lateral Heading       | 3822.06 | feet (BOR datum) |

EBID owns the Westside and Eastside Main Canals through Quitclaim Deed from the Bureau of Reclamation since 1996. EBID's property right starts at the canal headings at the Mesilla Dam. This right of way (ROW), conflicts slightly with the needs of the IBWC levee along the west river levee immediately downstream of the dam. Regardless, the uses are compatible with EBID's needs and the levee is not compromised by implementation of these proposed projects.

The need to raise both banks of both canals for adequate freeboard has minimal impact upon the IBWC's river levee as it only calls for raising the canal bank/levee for a 600 foot section.

Both banks have a gravel wearing surface installed and the earth work for both banks of the Westside canal must comply with IBWC levee construction standards. Raising the banks on the Eastside Canal does not overlap with the IBWC levees, but requires a gravel wearing surface above and beyond the freeboard elevations to avoid potential erosion. EBIDs ROW for the Westside Canal is 120 feet, a measurement that is shown by plat in Appendix 4. This 120 feet width consists of 55 feet from centerline to the left/east edge and 65 feet from the centerline of the canal to right/west edge. The Eastside canal entails 110 feet. These ROWs provide adequate width for the proposed structures and maintenance roads. The plats provided to EBID by the Bureau of Reclamation as part of the transfer are provided in Appendix 4.

÷.

### Mesilla Dam Gate Automation

Dam gate automation concept overview:

Mesilla Dam was built in 1905 by the US Reclamation Service, and it has been the core of the Rio Grande Project ever since. Diversions into the Eastside and Westside canals serve lands in both New Mexico and Texas, and the Westside Canal is by far the largest diversion in the Project. This diversion dam is a barrage-type structure, with 13 radial gates, each 21.5 feet wide, spanning the width of the Rio Grande. The gates are numbered from one on the east end to 13 on the west. The first two gates at each extreme end have inverts that are two feet lower than the other nine gates. Underflow gates were used instead of ogee structures like those at Percha and Leasburg dam because by the time water reaches Mesilla, lateral inflows from sediment-laden storm water has loaded the channel with sediment. The gates are intended to keep the sediment in the river and out of the canal systems. The basic structure of the dam has been maintained, but remains largely unchanged from its original design. The gates were historically operated by a "mule," a portable engine that would be rolled along the dam and hooked up to each gate to be raised or lowered.

Automated gate operators were installed on two gates of the Mesilla Dam in 1994 to allow for automatic and programmable upstream head and flow control. The automated gates have proven effective for EBID and for regular river operations. As shown in Figure 9, gates number 2 and 12, the second from the outmost gates were previously selected for automation. These gates have lower inverts than the middle nine gates, producing optimal sluicing capabilities. Since that time, those two gates are the most consistently operated and therefore, sediment buildup takes place near the middle gates annually.

It is proposed by EBID that two more gates be automated to better distribute the sluicing and sediment transport past the dam during automatic control operations. Gates 5 and 9, numbered from east to west, are proposed to have automated functions similarly to gates 2 and 12. These gates will aid in sluicing sediment beyond the dam during times of automatic control. An electric motor and counterbalance weights must be installed onto the gates. Automation is achieved with radio telemetry units similar to the other automated gates which are compatible with other SCADA controls throughout EBID's system. EBID has ample experience installing these automating controls and prefers to take the lead on the programing and automation controls.

In principle, two of the proposed automated gates are active in controlling the upstream state at any one time, but the active gate duties are rotated to minimize wear on any one gate operator and to balance the sediment sluicing across the width of the dam.



Figure 9. Photograph of Mesilla Dam showing gates currently automated and proposed for automation

Appendix 3: Sluiceway and check structure design



Ĩ

R

ß

-

b

K







3

1

ļ

11

į,

1

12

IJ

j,

11



VIE 4000 FSI 60482 F. T 1021343F =4 123/F 119233373F





.

U











Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report

# **APPENDIX L**

Comparative Water-surface Elevation Profile Plots for Modeled Alternatives and Predicted Change from Baseline Conditions

### October 20, 2015 Contract No. IBM09D0006 Order No. IBM14T0016

# Appendix L

Comparative Water-surface Elevation Profile Plots for Modeled Alternatives and Predicted Change from Baseline Conditions



Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report





Figure L.1. Predicted water-surface profiles at 2,350 cfs at Problem Location 1 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.2. Predicted change in water-surface elevation at 2,350 cfs at Problem Location 1 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.3. Predicted water-surface profiles at 3,000 cfs at Problem Location 1 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.









Figure L.5. Predicted water-surface profiles at 3,500 cfs at Problem Location 1 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.6. Predicted change in water-surface elevation at 3,500 cfs at Problem Location 1 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.7. Predicted water-surface profiles at the routed 100-year peak flow at Problem Location 1 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.8. Predicted change in water-surface elevation at the routed 100-year peak flow at Problem Location 1 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.9. Predicted water-surface profiles at 2,350 cfs at Problem Location 2 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.10. Predicted change in water-surface elevation at 2,350 cfs at Problem Location 2 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.11. Predicted water-surface profiles at 3,000 cfs at Problem Location 2 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.12. Predicted change in water-surface elevation at 3,000 cfs at Problem Location 2 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.13. Predicted water-surface profiles at 3,500 cfs at Problem Location 2 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.14. Predicted change in water-surface elevation at 3,500 cfs at Problem Location 2 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.15. Predicted water-surface profiles at the routed 100-year peak flow at Problem Location 2 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.16. Predicted change in water-surface elevation at the routed 100-year peak flow at Problem Location 2 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.17. Predicted water-surface profiles at 2,350 cfs at Problem Location 3 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.18. Predicted change in water-surface elevation at 2,350 cfs at Problem Location 3 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.19. Predicted water-surface profiles at 3,000 cfs at Problem Location 3 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.20. Predicted change in water-surface elevation at 3,000 cfs at Problem Location 3 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.




Figure L.21. Predicted water-surface profiles at 3,500 cfs at Problem Location 3 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.22. Predicted change in water-surface elevation at 3,500 cfs at Problem Location 3 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.23. Predicted water-surface profiles at the routed 100-year peak flow at Problem Location 3 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.24. Predicted change in water-surface elevation at the routed 100-year peak flow at Problem Location 3 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.25. Predicted water-surface profiles at 2,350 cfs at Problem Location 4 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.26. Predicted change in water-surface elevation at 2,350 cfs at Problem Location 4 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.27. Predicted water-surface profiles at 3,000 cfs at Problem Location 4 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.28. Predicted change in water-surface elevation at 3,000 cfs at Problem Location 4 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.29. Predicted water-surface profiles at 3,500 cfs at Problem Location 4 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.30. Predicted change in water-surface elevation at 3,500 cfs at Problem Location 4 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.31. Predicted water-surface profiles at the routed 100-year peak flow at Problem Location 4 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.32. Predicted change in water-surface elevation at the routed 100-year peak flow at Problem Location 4 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.33. Predicted water-surface profiles at 2,350 cfs at Problem Location 5 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.34. Predicted change in water-surface elevation at 2,350 cfs at Problem Location 5 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.35. Predicted water-surface profiles at 3,000 cfs at Problem Location 5 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.36. Predicted change in water-surface elevation at 3,000 cfs at Problem Location 5 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.37. Predicted water-surface profiles at 3,500 cfs at Problem Location 5 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.38. Predicted change in water-surface elevation at 3,500 cfs at Problem Location 5 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.39. Predicted water-surface profiles at the routed 100-year peak flow at Problem Location 5 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.40. Predicted change in water-surface elevation at the routed 100-year peak flow at Problem Location 5 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.41. Predicted water-surface profiles at 2,350 cfs at Problem Location 6 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.42. Predicted change in water-surface elevation at 2,350 cfs at Problem Location 6 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.43. Predicted water-surface profiles at 3,000 cfs at Problem Location 6 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.44. Predicted change in water-surface elevation at 3,000 cfs at Problem Location 6 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.45. Predicted water-surface profiles at 3,500 cfs at Problem Location 6 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.46. Predicted change in water-surface elevation at 3,500 cfs at Problem Location 6 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.47. Predicted water-surface profiles at the routed 100-year peak flow at Problem Location 6 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.48. Predicted change in water-surface elevation at the routed 100-year peak flow at Problem Location 6 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.49. Predicted water-surface profiles at 1,400 cfs at Problem Location 7 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.50. Predicted change in water-surface elevation at 1,400 cfs at Problem Location 7 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure L.52. Predicted change in water-surface elevation at 3,000 cfs at Problem Location 7 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure L.54. Predicted change in water-surface elevation at 3,500 cfs at Problem Location 7 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.55. Predicted water-surface profiles at the routed 100-year peak flow at Problem Location 7 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.56. Predicted change in water-surface elevation at the routed 100-year peak flow at Problem Location 7 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.57. Predicted water-surface profiles at 1,400 cfs at Problem Location 8 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.58. Predicted change in water-surface elevation at 1,400 cfs at Problem Location 8 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.59. Predicted water-surface profiles at 3,000 cfs at Problem Location 8 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.60. Predicted change in water-surface elevation at 3,000 cfs at Problem Location 8 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.61. Predicted water-surface profiles at 3,500 cfs at Problem Location 8 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.62. Predicted change in water-surface elevation at 3,500 cfs at Problem Location 8 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.63. Predicted water-surface profiles at the routed 100-year peak flow at Problem Location 8 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.64. Predicted change in water-surface elevation at the routed 100-year peak flow at Problem Location 8 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.65. Predicted water-surface profiles at 1,400 cfs at Problem Location 9 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.66. Predicted change in water-surface elevation at 1,400 cfs at Problem Location 9 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.67. Predicted water-surface profiles at 3,000 cfs at Problem Location 9 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.68. Predicted change in water-surface elevation at 3,000 cfs at Problem Location 9 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.69. Predicted water-surface profiles at 3,500 cfs at Problem Location 9 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.70. Predicted change in water-surface elevation at 3,500 cfs at Problem Location 9 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure L.71. Predicted water-surface profiles at the routed 100-year peak flow at Problem Location 9 under existing (base model) conditions and for the alternatives that were evaluated with the steady-state hydraulic model.



Figure L.72. Predicted change in water-surface elevation at the routed 100-year peak flow at Problem Location 9 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.



## **APPENDIX M**

Sediment-transport Model Results



## Appendix M.1

Comparative Spatial Profiles of the Sediment-transport Modeling Results for the Base and Alternative Conditions



Page Intentionally Left Blank





Figure M.1.1. Spatial profiles showing the predicted cumulative mass of aggradation or degradation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 1.



Figure M.1.2. Spatial profiles showing the predicted cumulative mass of aggradation or degradation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 2.





Figure M.1.3. Spatial profiles showing the predicted cumulative mass of aggradation or degradation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 3.



Figure M.1.4. Spatial profiles showing the predicted cumulative mass of aggradation or degradation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 4.





Figure M.1.5. Spatial profiles showing the predicted cumulative mass of aggradation or degradation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 5.



Figure M.1.6. Spatial profiles showing the predicted cumulative mass of aggradation or degradation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 6.





Figure M.1.7. Spatial profiles showing the predicted cumulative mass of aggradation or degradation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 7.



Figure M.1.8. Spatial profiles showing the predicted cumulative mass of aggradation or degradation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 8.





Figure M.1.9. Spatial profiles showing the predicted cumulative mass of aggradation or degradation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 9.



Figure M.1.10. Spatial profiles showing the predicted change in mean bed elevation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 1.

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report

M.1.5





Figure M.1.11. Spatial profiles showing the predicted change in mean bed elevation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 2.



Figure M.1.12. Spatial profiles showing the predicted change in mean bed elevation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 3.














Figure M.1.15. Spatial profiles showing the predicted change in mean bed elevation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 6.



Figure M.1.16. Spatial profiles showing the predicted change in mean bed elevation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 7.

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report M.1.8





Figure M.1.17. Spatial profiles showing the predicted change in mean bed elevation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 8.





Spatial profiles showing the predicted change in mean bed elevation at the end of the sediment-transport simulations for base alternative conditions at Problem Location 9.



## Appendix M.2

Comparative Temporal Plots Showing the Sediment-transport Modeling Results for the Base and Alternative Conditions



Page Intentionally Left Blank









Figure M.2.2. Predicted cumulative mass of aggradation or degradation over time along the modeled reach at Problem Location 2 from the sediment-transport simulations of the base and alternative conditions.









Figure M.2.4. Predicted cumulative mass of aggradation or degradation over time along the modeled reach at Problem Location 4 from the sediment-transport simulations of the base and alternative conditions.





Figure M.2.5. Predicted cumulative mass of aggradation or degradation over time along the modeled reach at Problem Location 5 from the sediment-transport simulations of the base and alternative conditions.









Figure M.2.7. Predicted cumulative mass of aggradation or degradation over time along the modeled reach at Problem Location 7 from the sediment-transport simulations of the base and alternative conditions.



Figure M.2.8. Predicted cumulative mass of aggradation or degradation over time along the modeled reach at Problem Location 8 from the sediment-transport simulations of the base and alternative conditions.









Figure M.2.10. Predicted cumulative mass delivered from the downstream of the model reach at Problem Location 1 from the sediment-transport simulations of the base and alternative conditions.









Figure M.2.12. Predicted cumulative mass delivered from the downstream of the model reach at Problem Location 3 from the sediment-transport simulations of the base and alternative conditions.









Figure M.2.14. Predicted cumulative mass delivered from the downstream of the model reach at Problem Location 5 from the sediment-transport simulations of the base and alternative conditions.





Figure M.2.15. Predicted cumulative mass delivered from the downstream of the model reach at Problem Location 6 from the sediment-transport simulations of the base and alternative conditions.



Figure M.2.16. Predicted cumulative mass delivered from the downstream of the model reach at Problem Location 7 from the sediment-transport simulations of the base and alternative conditions.









Figure M.2.18. Predicted cumulative mass delivered from the downstream of the model reach at Problem Location 9 from the sediment-transport simulations of the base and alternative conditions.





Figure M.2.19. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Tierra Blanca Creek (Problem Location 1) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.



10/1/04 10/1/05 10/1/06 10/1/07 9/30/08 9/30/09 9/30/10 9/30/11 9/29/12 9/29/13 9/29/14

Figure M.2.20. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Sibley Arroyo (Problem Location 1) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report





Figure M.2.21. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Thurman II Arroyo (Problem Location 2) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.



Figure M.2.22. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Thurman I Arroyo (Problem Location 2) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.





Figure M.2.23. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Placitas Arroyo (Problem Location 2) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.



Figure M.2.24. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Garcia Arroyo (Problem Location 3) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report





Figure M.2.25. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Rincon Arroyo (Problem Location 4) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.



Figure M.2.26. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Reed Arroyo (Problem Location 4) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.





Figure M.2.27. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Bignell Arroyo (Problem Location 4) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.



Figure M.2.28. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Rock Canyon (Problem Location 5) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report





Figure M.2.29. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at the Rincon/Tonuco Drain (Problem Location 5) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.



Figure M.2.30. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Mesilla Dam (Problem Location 6) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report





Figure M.2.31. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at the East Drain (Problem Location 7) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.



Figure M.2.32. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Vinton Bridge (Problem Location 7) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.





Figure M.2.33. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at the Subarea 103 (U/S) Arroyo (Problem Location 7) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.



Figure M.2.34. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Country Club Bridge (Problem Location 8) from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.





Figure M.2.35. Predicted cumulative mass of aggradation or degradation over time along the extents of the excavated reaches at Problem Location 9 from the sediment-transport simulations of the sediment-removal alternatives. The dashed lines represent the excavated mass for each type of excavation.



Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report

## **APPENDIX N**

Long-term Water-surface Elevation Profiles



## Appendix N

Comparative Long-term Water-surface Elevation Profile Plots for Modeled Alternatives and Predicted Change from Baseline Conditions Based on the Localized Hydraulic Models with Predicted Geometries at the End of the Sediment-transport Simulations











Figure N.2. Predicted change in long-term water-surface elevation at 2,350 cfs relative to the base condition at Problem Location 1 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure N.4. Predicted change in long-term water-surface elevation at the 100-year peak flow relative to the base condition at Problem Location 1 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure N.6. Predicted change in long-term water-surface elevation at 2,350 cfs relative to the base condition at Problem Location 2 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure N.8. Predicted change in long-term water-surface elevation at the 100-year peak flow relative to the base condition at Problem Location 2 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure N.10. Predicted change in long-term water-surface elevation at 2,350 cfs relative to the base condition at Problem Location 3 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.





Figure N.11. Predicted water-surface profiles at the 100-year peak flow at Problem Location 3 representing long-term conditions based on hydraulic modeling with the predicted geometry at the end of the sediment-transport simulations of the base and alternative conditions.



Figure N.12. Predicted change in long-term water-surface elevation at the 100-year peak flow relative to the base condition at Problem Location 3 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure N.14. Predicted change in long-term water-surface elevation at 2,350 cfs relative to the base condition at Problem Location 4 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure N.16. Predicted change in long-term water-surface elevation at the 100-year peak flow relative to the base condition at Problem Location 4 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure N.18. Predicted change in long-term water-surface elevation at 2,350 cfs relative to the base condition at Problem Location 5 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.



## **Problem Location 5**







Figure N.20. Predicted change in long-term water-surface elevation at the 100-year peak flow relative to the base condition at Problem Location 5 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure N.22. Predicted change in long-term water-surface elevation at 2,350 cfs relative to the base condition at Problem Location 6 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.








Figure N.24. Predicted change in long-term water-surface elevation at the 100-year peak flow relative to the base condition at Problem Location 6 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure N.26. Predicted change in long-term water-surface elevation at 1,400 cfs relative to the base condition at Problem Location 7 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure N.28. Predicted change in long-term water-surface elevation at the 100-year peak flow relative to the base condition at Problem Location 7 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.



# **Problem Location 8**







Figure N.30. Predicted change in long-term water-surface elevation at 1,400 cfs relative to the base condition at Problem Location 8 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure N.32. Predicted change in long-term water-surface elevation at the 100-year peak flow relative to the base condition at Problem Location 8 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.

N.16









Figure N.34. Predicted change in long-term water-surface elevation at 1,400 cfs relative to the base condition at Problem Location 9 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.









Figure N.36. Predicted change in long-term water-surface elevation at the 100-year peak flow relative to the base condition at Problem Location 9 for the alternatives that were evaluated with the steady-state hydraulic model compared to existing (base model) conditions.



Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report

# **APPENDIX O**

**Levee Freeboard Encroachment Profiles** 



# Appendix O

Levee Freeboard Encroachment Profiles



Page Intentionally Left Blank





Figure O.1. Predicted levee freeboard during the 100-year flow at Problem Location 2 representing long-term conditions based on hydraulic modeling with the predicted geometry at the end of the sediment-transport simulations of the base and alternative conditions.



Figure O.2. Predicted levee freeboard during the 100-year flow at Problem Location 3 representing long-term conditions based on hydraulic modeling with the predicted geometry at the end of the sediment-transport simulations of the base and alternative conditions.





Figure O.3. Predicted levee freeboard during the 100-year flow at Problem Location 4 representing long-term conditions based on hydraulic modeling with the predicted geometry at the end of the sediment-transport simulations of the base and alternative conditions.



Figure O.4. Predicted levee freeboard during the 100-year flow at Problem Location 6 representing long-term conditions based on hydraulic modeling with the predicted geometry at the end of the sediment-transport simulations of the base and alternative conditions.

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report





Figure O.5. Predicted levee freeboard during the 100-year flow at Problem Location 7 representing long-term conditions based on hydraulic modeling with the predicted geometry at the end of the sediment-transport simulations of the base and alternative conditions.



Figure O.6. Predicted levee freeboard during the 100-year flow at Problem Location 8 representing long-term conditions based on hydraulic modeling with the predicted geometry at the end of the sediment-transport simulations of the base and alternative conditions.





Figure O.7. Predicted levee freeboard during the 100-year flow at Problem Location 9 representing long-term conditions based on hydraulic modeling with the predicted geometry at the end of the sediment-transport simulations of the base and alternative conditions.

100-yr water surface within +/- 0.1-ft of levee top



Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report

# **APPENDIX P**

**Cost Estimates** 





#### TOTAL ANNUAL COSTS BY PROBLEM LOCATION AND ALTERNATIVE

#### Page 1 of 3

| PROBL    | EM LOCATION 1: TIERRA BLANCA CREEK TO SIBL | EY ARRO | YO       |                            |                            |                                |                           |                                       |
|----------|--------------------------------------------|---------|----------|----------------------------|----------------------------|--------------------------------|---------------------------|---------------------------------------|
|          |                                            |         |          | S                          | ediment Removal Alternativ | es                             | Non-Sediment Re           | moval Alternatives                    |
| Item No. | Item Description                           | UOM     | Quantity | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized) | Sediment Traps in Arroyos | Modification of the TB Vortex<br>Weir |
|          |                                            |         |          | Total Costs                | Total Costs                | Total Costs                    | Total Costs               | Total Costs                           |
| 1        | Total Construction Costs                   | LS      | 1        | \$196,130                  | \$462,974                  | \$58,728                       | \$706,400                 | \$20,059                              |
| 2        | Planning, Engineering & Design (PED)       | LS      | 1        | \$29,419                   | \$69,446                   | \$8,809                        | \$105,960                 | \$3,009                               |
| 3        | Construction Management (CM)               | LS      | 1        | \$19,613                   | \$46,297                   | \$5,873                        | \$70,640                  | \$2,006                               |
| 4        | Construction Subtotal                      | LS      | 1        | \$245,162                  | \$578,717                  | \$73,410                       | \$883,000                 | \$25,074                              |
| 5        | Construction Contingency                   | LS      | 1        | \$58,839                   | \$138,892                  | \$17,618                       | \$211,920                 | \$6,018                               |
| 6        | Total First Costs                          | LS      | 1        | \$304,001                  | \$717,610                  | \$91,028                       | \$1,094,920               | \$31,092                              |
|          |                                            |         |          |                            |                            |                                |                           |                                       |
| 7        | Annualized First Costs                     | LS      | 1        | \$12,700                   | \$30,000                   | \$3,800                        | \$45,700                  | \$1,300                               |
|          |                                            |         |          |                            |                            |                                |                           |                                       |
| 8        | Life Cycle O&M Costs                       | LS      | 1        | \$2,667,363                | \$4,120,468                | \$1,835,238                    | \$4,415,001               | \$50,149                              |
| 9        | O&M Contingency                            | LS      | 1        | \$800,209                  | \$1,236,140                | \$550,571                      | \$1,324,500               | \$15,045                              |
| 10       | O&M Total Costs                            | LS      | 1        | \$3,467,572                | \$5,356,608                | \$2,385,810                    | \$5,739,501               | \$65,193                              |
|          |                                            |         |          |                            |                            |                                |                           |                                       |
| 11       | Annualized O&M Costs                       | LS      | 1        | \$144,600                  | \$223,300                  | \$99,500                       | \$239,300                 | \$2,800                               |
|          |                                            |         |          |                            |                            |                                |                           |                                       |
| 12       | Total Annualized Project Costs             | LS      | 1        | \$157,300                  | \$253,300                  | \$103,300                      | \$285,000                 | \$4,100                               |
|          |                                            |         |          |                            |                            |                                |                           |                                       |

| PROBL    | LEM LOCATION 2: SALEM BRIDGE TO PLACITAS AF | ROTO |          |                            |                           |                                |                           |                                                |
|----------|---------------------------------------------|------|----------|----------------------------|---------------------------|--------------------------------|---------------------------|------------------------------------------------|
|          |                                             |      |          | S                          | noval Alternatives        |                                |                           |                                                |
| Item No. | Item Description                            | иом  | Quantity | Channel Excavation (Short) | Channel Excavation (Long) | Channel Excavation (Localized) | Sediment Traps in Arroyos | Island Destabilization /<br>Vegetation Removal |
|          |                                             |      |          | Total Costs                | Total Costs               | Total Costs                    | Total Costs               | Total Costs                                    |
| 1        | Total Construction Costs                    | LS   | 1        | \$793,004                  | \$1,188,484               | \$430,616                      | \$465,231                 | \$338,940                                      |
| 2        | Planning, Engineering & Design (PED)        | LS   | 1        | \$118,951                  | \$178,273                 | \$64,592                       | \$69,785                  | \$50,841                                       |
| 3        | Construction Management (CM)                | LS   | 1        | \$79,300                   | \$118,848                 | \$43,062                       | \$46,523                  | \$33,894                                       |
| 4        | Construction Subtotal                       | LS   | 1        | \$991,255                  | \$1,485,605               | \$538,270                      | \$581,538                 | \$423,675                                      |
| 5        | Construction Contingency                    | LS   | 1        | \$237,901                  | \$356,545                 | \$129,185                      | \$139,569                 | \$101,682                                      |
| 6        | Total First Costs                           | LS   | 1        | \$1,229,157                | \$1,842,150               | \$667,455                      | \$721,108                 | \$525,357                                      |
|          |                                             |      |          |                            |                           |                                |                           |                                                |
| 7        | Annualized First Costs                      | LS   | 1        | \$51,300                   | \$76,800                  | \$27,900                       | \$30,100                  | \$21,900                                       |
|          |                                             |      |          |                            |                           |                                |                           |                                                |
| 8        | Life Cycle O&M Costs                        | LS   | 1        | \$3,925,372                | \$5,764,148               | \$2,833,456                    | \$1,116,554               | \$1,016,819                                    |
| 9        | O&M Contingency                             | LS   | 1        | \$1,177,611                | \$1,729,244               | \$850,037                      | \$334,966                 | \$305,046                                      |
| 10       | O&M Total Costs                             | LS   | 1        | \$5,102,983                | \$7,493,393               | \$3,683,492                    | \$1,451,520               | \$1,321,865                                    |
|          |                                             |      |          |                            |                           |                                |                           |                                                |
| 11       | Annualized O&M Costs                        | LS   | 1        | \$212,700                  | \$312,400                 | \$153,600                      | \$60,500                  | \$55,100                                       |
|          |                                             |      |          |                            |                           |                                |                           |                                                |
| 12       | Total Annualized Project Costs              | LS   | 1        | \$264,000                  | \$389,200                 | \$181,500                      | \$90,600                  | \$77,000                                       |
|          |                                             |      |          |                            |                           |                                |                           |                                                |

#### PROBLEM LOCATION 3: RINCON SIPHON A RESTORATION SITE TO RINCON SIPHON

|          |                                      |     |          | 5                          | ediment Removal Alternativ | Non-Sediment Removal Alternatives |                           |                                     |  |
|----------|--------------------------------------|-----|----------|----------------------------|----------------------------|-----------------------------------|---------------------------|-------------------------------------|--|
| Item No. | Item Description                     | UOM | Quantity | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized)    | Sediment Traps in Arroyos | Replace Rincon Siphon with<br>Flume |  |
|          |                                      |     |          | Total Costs                | Total Costs                | Total Costs                       | Total Costs               | Total Costs                         |  |
| 1        | Total Construction Costs             | LS  | 1        | \$162,128                  | \$342,192                  | \$105,692                         | \$99,764                  | \$1,283,501                         |  |
| 2        | Planning, Engineering & Design (PED) | LS  | 1        | \$24,319                   | \$51,329                   | \$15,854                          | \$14,965                  | \$192,525                           |  |
| 3        | Construction Management (CM)         | LS  | 1        | \$16,213                   | \$34,219                   | \$10,569                          | \$9,976                   | \$128,350                           |  |
| 4        | Construction Subtotal                | LS  | 1        | \$202,660                  | \$427,740                  | \$132,116                         | \$124,705                 | \$1,604,376                         |  |
| 5        | Construction Contingency             | LS  | 1        | \$48,638                   | \$102,658                  | \$31,708                          | \$29,929                  | \$385,050                           |  |
| 6        | Total First Costs                    | LS  | 1        | \$251,299                  | \$530,398                  | \$163,823                         | \$154,634                 | \$1,989,426                         |  |
|          |                                      |     |          |                            |                            |                                   |                           |                                     |  |
| 7        | Annualized First Costs               | LS  | 1        | \$10,500                   | \$22,200                   | \$6,900                           | \$6,500                   | \$83,000                            |  |
|          |                                      |     |          |                            |                            |                                   |                           |                                     |  |
| 8        | Life Cycle O&M Costs                 | LS  | 1        | \$885,220                  | \$1,591,194                | \$695,456                         | \$140,069                 | \$320,875                           |  |
| 9        | O&M Contingency                      | LS  | 1        | \$265,566                  | \$477,358                  | \$208,637                         | \$42,021                  | \$96,263                            |  |
| 10       | O&M Total Costs                      | LS  | 1        | \$1,150,786                | \$2,068,552                | \$904,093                         | \$182,089                 | \$417,138                           |  |
|          |                                      |     |          |                            |                            |                                   |                           |                                     |  |
| 11       | Annualized O&M Costs                 | LS  | 1        | \$48,000                   | \$86,300                   | \$37,700                          | \$7,600                   | \$17,400                            |  |
|          |                                      |     |          |                            |                            |                                   |                           |                                     |  |
| 12       | Total Annualized Project Costs       | LS  | 1        | \$58,500                   | \$108,500                  | \$44,600                          | \$14,100                  | \$100,400                           |  |
|          |                                      |     |          |                            |                            |                                   |                           |                                     |  |



#### TOTAL ANNUAL COSTS BY PROBLEM LOCATION AND ALTERNATIVE

#### Page 2 of 3

| PROBL    | EM LOCATION 4: RINCON ARROYO TO BIGNELL A | RROYO |          |                            |                            |                                |                                        |                          |
|----------|-------------------------------------------|-------|----------|----------------------------|----------------------------|--------------------------------|----------------------------------------|--------------------------|
|          |                                           |       |          | Se                         | ediment Removal Alternativ | es                             | Non-Sediment Rer                       | noval Alternatives       |
| Item No. | Item Description                          | UOM   | Quantity | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized) | Island Destabilization / Spur<br>Dikes | Low-Elevation Spur Dikes |
|          |                                           |       |          | Total Costs                | Total Costs                | Total Costs                    | Total Costs                            | Total Costs              |
| 1        | Total Construction Costs                  | LS    | 1        | \$607,826                  | \$2,064,157                | \$354,064                      | \$428,803                              | \$373,807                |
| 2        | Planning, Engineering & Design (PED)      | LS    | 1        | \$91,174                   | \$309,624                  | \$53,110                       | \$64,320                               | \$56,071                 |
| 3        | Construction Management (CM)              | LS    | 1        | \$60,783                   | \$206,416                  | \$35,406                       | \$42,880                               | \$37,381                 |
| 4        | Construction Subtotal                     | LS    | 1        | \$759,783                  | \$2,580,197                | \$442,580                      | \$536,003                              | \$467,259                |
| 5        | Construction Contingency                  | LS    | 1        | \$182,348                  | \$619,247                  | \$106,219                      | \$128,641                              | \$112,142                |
| 6        | Total First Costs                         | LS    | 1        | \$942,131                  | \$3,199,444                | \$548,800                      | \$664,644                              | \$579,401                |
|          |                                           |       |          |                            |                            |                                |                                        |                          |
| 7        | Annualized First Costs                    | LS    | 1        | \$39,300                   | \$133,400                  | \$22,900                       | \$27,800                               | \$24,200                 |
|          |                                           |       |          |                            |                            |                                |                                        |                          |
| 8        | Life Cycle O&M Costs                      | LS    | 1        | \$11,396,741               | \$9,598,332                | \$6,638,706                    | \$1,286,408                            | \$747,614                |
| 9        | O&M Contingency                           | LS    | 1        | \$3,419,022                | \$2,879,500                | \$1,991,612                    | \$385,922                              | \$224,284                |
| 10       | O&M Total Costs                           | LS    | 1        | \$14,815,763               | \$12,477,832               | \$8,630,317                    | \$1,672,331                            | \$971,898                |
|          |                                           |       |          |                            |                            |                                |                                        |                          |
| 11       | Annualized O&M Costs                      | LS    | 1        | \$617,500                  | \$520,100                  | \$359,700                      | \$69,700                               | \$40,600                 |
|          |                                           |       |          |                            |                            |                                |                                        |                          |
| 12       | Total Annualized Project Costs            | LS    | 1        | \$656,800                  | \$653,500                  | \$382,600                      | \$97,500                               | \$64,800                 |
|          |                                           |       |          |                            |                            |                                |                                        |                          |

#### PROBLEM LOCATION 5: ROCK CANYON TO BELOW RINCON/TONUCO DRAIN OUTLET

|          |                                      |     |          | S                          | ediment Removal Alternativ | Non-Sediment Ren               | noval Alternatives        |                          |
|----------|--------------------------------------|-----|----------|----------------------------|----------------------------|--------------------------------|---------------------------|--------------------------|
| Item No. | Item Description                     | UOM | Quantity | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized) | Sediment Traps in Arroyos | Low-Elevation Spur Dikes |
|          |                                      |     |          | Total Costs                | Total Costs                | Total Costs                    | Total Costs               | Total Costs              |
| 1        | Total Construction Costs             | LS  | 1        | \$957,609                  | \$957,609                  | \$957,609                      | \$957,609                 | \$957,609                |
| 2        | Planning, Engineering & Design (PED) | LS  | 1        | \$957,609                  | \$957,609                  | \$957,609                      | \$957,609                 | \$957,609                |
| 3        | Construction Management (CM)         | LS  | 1        | \$957,609                  | \$957,609                  | \$957,609                      | \$957,609                 | \$957,609                |
| 4        | Construction Subtotal                | LS  | 1        | \$2,872,826                | \$2,872,826                | \$2,872,826                    | \$2,872,826               | \$2,872,826              |
| 5        | Construction Contingency             | LS  | 1        | \$957,609                  | \$957,609                  | \$957,609                      | \$957,609                 | \$957,609                |
| 6        | Total First Costs                    | LS  | 1        | \$3,830,434                | \$3,830,434                | \$3,830,434                    | \$3,830,434               | \$3,830,434              |
|          |                                      |     |          |                            |                            |                                |                           |                          |
| 7        | Annualized First Costs               | LS  | 1        | \$159,700                  | \$159,700                  | \$159,700                      | \$159,700                 | \$159,700                |
|          |                                      |     |          |                            |                            |                                |                           |                          |
| 8        | Life Cycle O&M Costs                 | LS  | 1        | \$2,671,117                | \$2,025,190                | \$3,052,870                    | \$297,412                 | \$1,153,888              |
| 9        | O&M Contingency                      | LS  | 1        | \$801,335                  | \$607,557                  | \$915,861                      | \$89,224                  | \$346,166                |
| 10       | O&M Total Costs                      | LS  | 1        | \$3,472,452                | \$2,632,747                | \$3,968,730                    | \$386,636                 | \$1,500,055              |
|          |                                      |     |          |                            |                            |                                |                           |                          |
| 11       | Annualized O&M Costs                 | LS  | 1        | \$144,800                  | \$109,800                  | \$165,500                      | \$16,200                  | \$62,600                 |
|          |                                      |     |          |                            |                            |                                |                           |                          |
| 12       | Total Annualized Project Costs       | LS  | 1        | \$304,500                  | \$269,500                  | \$325,200                      | \$175,900                 | \$222,300                |
|          |                                      |     |          |                            |                            |                                |                           |                          |

#### PROBLEM LOCATION 6: PICACHO DRAIN TO BELOW MESILLA DAM

|          |                                      |     |          | Sediment Remo              | val Alternatives          | Non-Sediment Removal Alternatives        |                             | ives                         |
|----------|--------------------------------------|-----|----------|----------------------------|---------------------------|------------------------------------------|-----------------------------|------------------------------|
| Item No. | Item Description                     | UOM | Quantity | Channel Excavation (Short) | Channel Excavation (Long) | New Check/Sluice Structures in<br>Canals | Mesilla Dam Gate Automation | Installation of Vortex Tubes |
|          |                                      |     |          | Total Costs                | Total Costs               | Total Costs                              | Total Costs                 | Total Costs                  |
| 1        | Total Construction Costs             | LS  | 1        | \$332,117                  | \$544,351                 | \$2,127,960                              | \$2,300,000                 | \$272,550                    |
| 2        | Planning, Engineering & Design (PED) | LS  | 1        | \$49,817                   | \$81,653                  | \$319,194                                | \$345,000                   | \$40,883                     |
| 3        | Construction Management (CM)         | LS  | 1        | \$33,212                   | \$54,435                  | \$212,796                                | \$230,000                   | \$27,255                     |
| 4        | Construction Subtotal                | LS  | 1        | \$415,146                  | \$680,438                 | \$2,659,950                              | \$2,875,000                 | \$340,688                    |
| 5        | Construction Contingency             | LS  | 1        | \$99,635                   | \$163,305                 | \$638,388                                | \$690,000                   | \$81,765                     |
| 6        | Total First Costs                    | LS  | 1        | \$514,781                  | \$843,744                 | \$3,298,338                              | \$3,565,000                 | \$422,453                    |
|          |                                      |     |          |                            |                           |                                          |                             |                              |
| 7        | Annualized First Costs               | LS  | 1        | \$21,500                   | \$35,200                  | \$137,500                                | \$148,600                   | \$17,700                     |
|          |                                      |     |          |                            |                           |                                          |                             |                              |
| 8        | Life Cycle O&M Costs                 | LS  | 1        | \$23,580,275               | \$3,919,326               | \$319,194                                | \$287,500                   | \$136,275                    |
| 9        | O&M Contingency                      | LS  | 1        | \$7,074,083                | \$1,175,798               | \$95,758                                 | \$86,250                    | \$40,883                     |
| 10       | O&M Total Costs                      | LS  | 1        | \$30,654,358               | \$5,095,123               | \$414,952                                | \$373,750                   | \$177,158                    |
|          |                                      |     |          |                            |                           |                                          |                             |                              |
| 11       | Annualized O&M Costs                 | LS  | 1        | \$1,277,600                | \$212,400                 | \$17,300                                 | \$15,600                    | \$7,400                      |
|          |                                      |     |          |                            |                           |                                          |                             |                              |
| 12       | Total Annualized Project Costs       | LS  | 1        | \$1,299,100                | \$247,600                 | \$154,800                                | \$164,200                   | \$25,100                     |
|          |                                      |     |          |                            |                           |                                          |                             |                              |



#### TOTAL ANNUAL COSTS BY PROBLEM LOCATION AND ALTERNATIVE

#### Page 3 of 3

| PROBL    | EM LOCATION 7: EAST DRAIN TO BELOW VINTON | BRIDGE |          |                            |                            |                                |                           |                          |
|----------|-------------------------------------------|--------|----------|----------------------------|----------------------------|--------------------------------|---------------------------|--------------------------|
|          |                                           |        |          | S                          | ediment Removal Alternativ | es                             | Non-Sediment Ren          | noval Alternatives       |
| Item No. | Item Description                          | UOM    | Quantity | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized) | Sediment Traps in Arroyos | Low-Elevation Spur Dikes |
|          |                                           |        |          | Total Costs                | Total Costs                | Total Costs                    | Total Costs               | Total Costs              |
| 1        | Total Construction Costs                  | LS     | 1        | \$357,561                  | \$452,902                  | \$41,281                       | \$387,117                 | \$409,567                |
| 2        | Planning, Engineering & Design (PED)      | LS     | 1        | \$53,634                   | \$67,935                   | \$6,192                        | \$58,068                  | \$61,435                 |
| 3        | Construction Management (CM)              | LS     | 1        | \$35,756                   | \$45,290                   | \$4,128                        | \$38,712                  | \$40,957                 |
| 4        | Construction Subtotal                     | LS     | 1        | \$446,951                  | \$566, 128                 | \$51,601                       | \$483,896                 | \$511,958                |
| 5        | Construction Contingency                  | LS     | 1        | \$107,268                  | \$135,871                  | \$12,384                       | \$116,135                 | \$122,870                |
| 6        | Total First Costs                         | LS     | 1        | \$554,219                  | \$701,998                  | \$63,986                       | \$600,031                 | \$634,828                |
|          |                                           |        |          |                            |                            |                                |                           |                          |
| 7        | Annualized First Costs                    | LS     | 1        | \$23,100                   | \$29,300                   | \$2,700                        | \$25,100                  | \$26,500                 |
|          |                                           |        |          |                            |                            |                                |                           |                          |
| 8        | Life Cycle O&M Costs                      | LS     | 1        | \$2,302,692                | \$2,500,020                | \$774,018                      | \$966,243                 | \$819,134                |
| 9        | O&M Contingency                           | LS     | 1        | \$690,808                  | \$750,006                  | \$232,205                      | \$289,873                 | \$245,740                |
| 10       | O&M Total Costs                           | LS     | 1        | \$2,993,500                | \$3,250,026                | \$1,006,224                    | \$1,256,116               | \$1,064,874              |
|          |                                           |        |          |                            |                            |                                |                           |                          |
| 11       | Annualized O&M Costs                      | LS     | 1        | \$124,800                  | \$135,500                  | \$42,000                       | \$52,400                  | \$44,400                 |
|          |                                           |        |          |                            |                            |                                |                           |                          |
| 12       | Total Annualized Project Costs            | LS     | 1        | \$147,900                  | \$164,800                  | \$44,700                       | \$77,500                  | \$70,900                 |
|          |                                           |        |          |                            |                            |                                |                           |                          |

| PROBL    | EM LOCATION 8: ABOVE COUNTRY CLUB BRIDGE | TO NEME | XAS SIPHON |                                                 |                           |                                |                                      |                          |  |  |  |
|----------|------------------------------------------|---------|------------|-------------------------------------------------|---------------------------|--------------------------------|--------------------------------------|--------------------------|--|--|--|
|          |                                          |         |            | Sediment Removal Alternatives Non-Sediment Remo |                           |                                |                                      |                          |  |  |  |
| Item No. | Item Description                         | UOM     | Quantity   | Channel Excavation (Short)                      | Channel Excavation (Long) | Channel Excavation (Localized) | Riprap in Narrow Floodplain<br>Areas | Low-Elevation Spur Dikes |  |  |  |
|          |                                          |         |            | Total Costs                                     | Total Costs               | Total Costs                    | Total Costs                          | Total Costs              |  |  |  |
| 1        | Total Construction Costs                 | LS      | 1          | \$200,716                                       | \$402,811                 | \$82,660                       | \$268,008                            | \$197,011                |  |  |  |
| 2        | Planning, Engineering & Design (PED)     | LS      | 1          | \$30,107                                        | \$60,422                  | \$12,399                       | \$40,201                             | \$29,552                 |  |  |  |
| 3        | Construction Management (CM)             | LS      | 1          | \$20,072                                        | \$40,281                  | \$8,266                        | \$26,801                             | \$19,701                 |  |  |  |
| 4        | Construction Subtotal                    | LS      | 1          | \$250,896                                       | \$503,513                 | \$103,325                      | \$335,009                            | \$246,264                |  |  |  |
| 5        | Construction Contingency                 | LS      | 1          | \$60,215                                        | \$120,843                 | \$24,798                       | \$80,402                             | \$59,103                 |  |  |  |
| 6        | Total First Costs                        | LS      | 1          | \$311,110                                       | \$624,356                 | \$128, 123                     | \$415,412                            | \$305,367                |  |  |  |
|          |                                          |         |            |                                                 |                           |                                |                                      |                          |  |  |  |
| 7        | Annualized First Costs                   | LS      | 1          | \$13,000                                        | \$26,100                  | \$5,400                        | \$17,400                             | \$12,800                 |  |  |  |
|          |                                          |         |            |                                                 |                           |                                |                                      |                          |  |  |  |
| 8        | Life Cycle O&M Costs                     | LS      | 1          | \$3,763,433                                     | \$4,108,667               | \$2,479,808                    | \$201,006                            | \$394,022                |  |  |  |
| 9        | O&M Contingency                          | LS      | 1          | \$1,129,030                                     | \$1,232,600               | \$743,942                      | \$60,302                             | \$118,207                |  |  |  |
| 10       | O&M Total Costs                          | LS      | 1          | \$4,892,462                                     | \$5,341,267               | \$3,223,751                    | \$261,307                            | \$512,229                |  |  |  |
|          |                                          |         |            |                                                 |                           |                                |                                      |                          |  |  |  |
| 11       | Annualized O&M Costs                     | LS      | 1          | \$204,000                                       | \$222,700                 | \$134,400                      | \$10,900                             | \$21,400                 |  |  |  |
|          |                                          |         |            |                                                 |                           |                                |                                      |                          |  |  |  |
| 12       | Total Annualized Project Costs           | LS      | 1          | \$217,000                                       | \$248,800                 | \$139,800                      | \$28,300                             | \$34,200                 |  |  |  |
|          |                                          |         |            |                                                 |                           |                                |                                      |                          |  |  |  |

#### PROBLEM LOCATION 9: MONTOYA DRAIN TO AMERICAN DAM

|          |                                      |     |          | 2                          | ediment Removal Alternativ | Non-Sealment Rer               | noval Alternatives                             |                          |
|----------|--------------------------------------|-----|----------|----------------------------|----------------------------|--------------------------------|------------------------------------------------|--------------------------|
| Item No. | Item Description                     | UOM | Quantity | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized) | Island Destabilization /<br>Vegetation Removal | Low-Elevation Spur Dikes |
|          |                                      |     |          | Total Costs                | Total Costs                | Total Costs                    | Total Costs                                    | Total Costs              |
| 1        | Total Construction Costs             | LS  | 1        | \$362,602                  | \$1,646,860                | \$145,432                      | \$141,632                                      | \$150,219                |
| 2        | Planning, Engineering & Design (PED) | LS  | 1        | \$54,390                   | \$247,029                  | \$21,815                       | \$21,245                                       | \$22,533                 |
| 3        | Construction Management (CM)         | LS  | 1        | \$36,260                   | \$164,686                  | \$14,543                       | \$14,163                                       | \$15,022                 |
| 4        | Construction Subtotal                | LS  | 1        | \$453,253                  | \$2,058,575                | \$181,790                      | \$177,040                                      | \$187,774                |
| 5        | Construction Contingency             | LS  | 1        | \$108,781                  | \$494,058                  | \$43,630                       | \$42,490                                       | \$45,066                 |
| 6        | Total First Costs                    | LS  | 1        | \$562,034                  | \$2,552,634                | \$225,419                      | \$219,529                                      | \$232,840                |
|          |                                      |     |          |                            |                            |                                |                                                |                          |
| 7        | Annualized First Costs               | LS  | 1        | \$23,500                   | \$106,400                  | \$9,400                        | \$9,200                                        | \$9,800                  |
|          |                                      |     |          |                            |                            |                                |                                                |                          |
| 8        | Life Cycle O&M Costs                 | LS  | 1        | \$4,583,295                | \$7,904,930                | \$10,398,379                   | \$424,896                                      | \$300,439                |
| 9        | O&M Contingency                      | LS  | 1        | \$1,374,989                | \$2,371,479                | \$3,119,514                    | \$127,469                                      | \$90,132                 |
| 10       | O&M Total Costs                      | LS  | 1        | \$5,958,284                | \$10,276,409               | \$13,517,893                   | \$552,364                                      | \$390,570                |
|          |                                      |     |          |                            |                            |                                |                                                |                          |
| 11       | Annualized O&M Costs                 | LS  | 1        | \$248,400                  | \$428,300                  | \$563,400                      | \$23,100                                       | \$16,300                 |
|          |                                      |     |          |                            |                            |                                |                                                |                          |
| 12       | Total Annualized Project Costs       | LS  | 1        | \$271,900                  | \$534,700                  | \$572,800                      | \$32,300                                       | \$26,100                 |
|          |                                      |     |          |                            |                            |                                |                                                |                          |



PROJECT: Rio Grande Canalization Project - Alternative Cost Estimates DETAIL: Problem Location 1 - Cost and Quantities COMPUTED BY: SKV CHECKED BY: IGP

PROBLEM LOCATION 1: TIERRA BLANCA CREEK TO SIBLEY ARROYO

| D, |       | of 2 |
|----|-------|------|
| Pa | age i | Of Z |

|          | CONSTRUCTION COSTS BY ALTERNATIVE                   |           |                 |             |                  |             |                 |              |                    |             |                |              |                          |
|----------|-----------------------------------------------------|-----------|-----------------|-------------|------------------|-------------|-----------------|--------------|--------------------|-------------|----------------|--------------|--------------------------|
|          |                                                     |           |                 |             | S                | ediment Rem | oval Alternativ | es           |                    | No          | n-Sediment Re  | moval Altern | atives                   |
| Item No. | Item Description                                    | UOM       | Unit Cost       | Channel Exc | cavation (Short) | Channel Exc | avation (Long)  | Channel Exca | vation (Localized) | Sediment Tr | aps in Arroyos | Modification | of the TB Vortex<br>Weir |
|          |                                                     |           |                 | Quant.      | Total Cost       | Quant.      | Total Cost      | Quant.       | Total Cost         | Quant.      | Total Cost     | Quant.       | Total Cost               |
| 1        | Mobilization / Demobilization                       | LS        | 12.50%          | 1           | \$21,318         | 1           | \$50,323        | 1            | \$6,383            | 1           | \$76,783       | 1            | \$2,180                  |
| 2        | Site Access and Staging                             | LS        | 2.50%           | 1           | \$4,264          | 1           | \$10,065        | 1            | \$1,277            | 1           | \$15,357       | 1            | \$436                    |
| 3        | Clearing and Grubbing                               | ACRE      | \$2,000.00      | 2.6         | \$5,120          | 6.0         | \$12,000        | 2.4          | \$4,780            | 9.8         | \$19,600       | 1.0          | \$2,000                  |
| 4        | Excavation (Sediment Removal)                       | CY        | \$2.75          | 20,550      | \$56,513         | 48,520      | \$133,430       | 5,750        | \$15,813           | 0           | \$0            | 0            | \$0                      |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY        | \$3.80          | 20,550      | \$78,090         | 48,520      | \$184,376       | 5,750        | \$21,850           | 0           | \$0            | 0            | \$0                      |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY        | \$1.50          | 20,550      | \$30,825         | 48,520      | \$72,780        | 5,750        | \$8,625            | 0           | \$0            | 0            | \$0                      |
| 7        | Excavation (Sediment Traps)                         | CY        | \$4.25          | 0           | \$0              | 0           | \$0             | 0            | \$0                | 59,532      | \$253,011      | 0            | \$0                      |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF        | \$50.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 360         | \$18,000       | 0            | \$0                      |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF        | \$75.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 525         | \$39,375       | 0            | \$0                      |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF        | \$85.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 560         | \$47,600       | 0            | \$0                      |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF        | \$30.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 575         | \$17,250       | 0            | \$0                      |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF        | \$55.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 440         | \$24,200       | 0            | \$0                      |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF        | \$70.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY        | \$3.50          | 0           | \$0              | 0           | \$0             | 0            | \$0                | 3,125       | \$10,938       | 0            | \$0                      |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY        | \$15.25         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 350         | \$5,338        | 0            | \$0                      |
| 16       | Pilot Channel Excavation                            | CY        | \$6.50          | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 2,222        | \$14,443                 |
| 17       | Maintenance Road                                    | SF        | \$2.00          | 0           | \$0              | 0           | \$0             | 0            | \$0                | 29,475      | \$58,950       | 0            | \$0                      |
| 18       | Debris Rack                                         | EA        | \$40,000.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 3           | \$120,000      | 0            | \$0                      |
| 19       | Structural Excavation                               | CY        | \$10.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 50           | \$500                    |
| 20       | Rock Removal                                        | CY        | \$20.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 25           | \$500                    |
| 21       | Sheet Pile Wall Demolition                          | LF        | \$100.00        | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 22       | Demo Existing Siphon                                | LF        | \$52.50         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 23       | Reinforced Concrete Box                             | CY        | \$800.00        | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 24       | Spur Dike Stone                                     | CY        | \$70.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 25       | Over-excavation (Spur Dikes)                        | CY        | \$10.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 26       | Compacted Backfill (Spur Dikes)                     | CY        | \$5.50          | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 27       | Bank Protection Bedding                             | CY        | \$40.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 28       | Bank Protection Riprap                              | CY        | \$70.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 29       | Concrete Sill                                       | CY        | \$625.00        | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 30       | Vortex Tube                                         | LF        | \$25.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 31       | Escape Channels                                     | LF        | \$35.00         | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 32       | Control Gate                                        | EA        | \$2,000.00      | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 33       | 12-in CMP Culvert                                   | EA        | \$1,500.00      | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 34       | Eastside Canal Overflow Check and Bypass            | EA        | \$800,000       | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 35       | Westside Canal Overflow Check and Bypass            | EA        | \$1,050,000     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
| 36       | Mesilla Dam Gate Automation                         | EA        | \$1,000,000     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0            | \$0                      |
|          |                                                     |           |                 |             |                  |             |                 |              |                    |             |                |              |                          |
|          | Total Constru                                       | tion Cost | oor Altornativo | \$10        | 6 130            | \$46        | 32 974          | \$5          | 8 728              | \$70        | 06.400         | \$2          | 0.059                    |

| Total Construction Cost per Alternative:   | \$196,130 | \$462,974 | \$58,728 | \$706,400   | \$20,059 |
|--------------------------------------------|-----------|-----------|----------|-------------|----------|
| Planning, Engineering & Design (PED - 15%) | \$29,419  | \$69,446  | \$8,809  | \$105,960   | \$3,009  |
| Construction Management (CM - 10%)         | \$19,613  | \$46,297  | \$5,873  | \$70,640    | \$2,006  |
| Sub-total Cost (1):                        | \$245,162 | \$578,717 | \$73,410 | \$883,000   | \$25,074 |
| Construction Continency (30%):             | \$58,839  | \$138,892 | \$17,618 | \$211,920   | \$6,018  |
| Total Construction Cost:                   | \$304,001 | \$717,610 | \$91,028 | \$1,094,920 | \$31,092 |



PROJECT: Rio Grande Canalization Project - Alternative Cost Estimates DETAIL: Problem Location 1 - Cost and Quantities COMPUTED BY: SKV CHECKED BY: IGP

PROBLEM LOCATION 1: TIERRA BLANCA CREEK TO SIBLEY ARROYO

Page 2 of 2

|      |                             |         |                 | O&M COSTS BY ALTERNATIVE<br>Sediment Removal Alternatives |                 |             |                 |              |                    | Non-Sediment Removal Alternatives |                |                      |                  |  |
|------|-----------------------------|---------|-----------------|-----------------------------------------------------------|-----------------|-------------|-----------------|--------------|--------------------|-----------------------------------|----------------|----------------------|------------------|--|
|      |                             |         |                 |                                                           |                 |             |                 |              |                    |                                   | ir-Seuiment Ke | Modification         | of the TB Vortex |  |
| Year | O&M Year                    | UOM     | Unit Cost       | Channel Exc                                               | avation (Short) | Channel Exe | cavation (Long) | Channel Exca | vation (Localized) | Sediment Tr                       | aps in Arroyos |                      | Weir             |  |
| 4    | OPM Year 1                  | 18      | % of Const      | 0.0%                                                      | SO SO           | 0.0%        | fotal Cost      | 0&M %        | \$36 705           | 0.0%                              | SO SO          | 0.0%                 | SO SO            |  |
| 2    | O&M Year 1                  | 18      | % of Const      | 0.0%                                                      | \$0             | 0.0%        | \$0<br>\$0      | 62.5%        | \$36,705           | 25.0%                             | \$176.600      | 0.0%                 | \$0<br>\$0       |  |
| 2    | ORM Veer 2                  | 1.0     | % of Const.     | 85.0%                                                     | \$166 710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 3    | O&M Voor 4                  | 1.5     | % of Const      | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176.600      | 0.0%                 | \$0              |  |
| 5    | O&M Voor 5                  | 1.5     | % of Const.     | 0.0%                                                      | \$0             | 89.0%       | \$412.047       | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 6    | O&M Voor 6                  | 1.5     | % of Const      | 85.0%                                                     | \$166 710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176.600      | 0.0%                 | \$0              |  |
| 7    | O&M Voor 7                  | 1.5     | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 0    | O&M Voor 9                  | 1.5     | % of Const      | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176.600      | 0.0%                 | \$0              |  |
| 9    | O&M Year 9                  | 15      | % of Const.     | 85.0%                                                     | \$166,710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 10   | O&M Year 10                 | 15      | % of Const.     | 0.0%                                                      | \$0             | 89.0%       | \$412.047       | 62.5%        | \$36,705           | 25.0%                             | \$176.600      | 50.0%                | \$10.030         |  |
| 11   | O&M Year 11                 | 15      | % of Const      | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 12   | O&M Year 12                 | 1.5     | % of Const.     | 85.0%                                                     | \$166.710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176.600      | 0.0%                 | \$0              |  |
| 13   | O&M Year 13                 | 1.5     | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 14   | O&M Year 14                 | 1.5     | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176.600      | 0.0%                 | \$0              |  |
| 15   | O&M Year 15                 | LS      | % of Const.     | 85.0%                                                     | \$166.710       | 89.0%       | \$412.047       | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 16   | O&M Year 16                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 17   | O&M Year 17                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 18   | O&M Year 18                 | LS      | % of Const.     | 85.0%                                                     | \$166,710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 19   | O&M Year 19                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 20   | O&M Year 20                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 89.0%       | \$412,047       | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 50.0%                | \$10,030         |  |
| 21   | O&M Year 21                 | LS      | % of Const.     | 85.0%                                                     | \$166,710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 22   | O&M Year 22                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 23   | O&M Year 23                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 24   | O&M Year 24                 | LS      | % of Const.     | 85.0%                                                     | \$166,710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 25   | O&M Year 25                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 89.0%       | \$412,047       | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 26   | O&M Year 26                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 27   | O&M Year 27                 | LS      | % of Const.     | 85.0%                                                     | \$166,710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 28   | O&M Year 28                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 29   | O&M Year 29                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 30   | O&M Year 30                 | LS      | % of Const.     | 85.0%                                                     | \$166,710       | 89.0%       | \$412,047       | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 50.0%                | \$10,030         |  |
| 31   | O&M Year 31                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 32   | O&M Year 32                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 33   | O&M Year 33                 | LS      | % of Const.     | 85.0%                                                     | \$166,710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 34   | O&M Year 34                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 35   | O&M Year 35                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 89.0%       | \$412,047       | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 36   | O&M Year 36                 | LS      | % of Const.     | 85.0%                                                     | \$166,710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 37   | O&M Year 37                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 38   | O&M Year 38                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 39   | O&M Year 39                 | LS      | % of Const.     | 85.0%                                                     | \$166,710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 40   | O&M Year 40                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 89.0%       | \$412,047       | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 50.0%                | \$10,030         |  |
| 41   | O&M Year 41                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 42   | O&M Year 42                 | LS      | % of Const.     | 85.0%                                                     | \$166,710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 43   | O&M Year 43                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 44   | O&M Year 44                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 45   | O&M Year 45                 | LS      | % of Const.     | 85.0%                                                     | \$166,710       | 89.0%       | \$412,047       | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 46   | U&M Year 46                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 47   | O&M Year 47                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 48   | U&M Year 48                 | LS      | % of Const.     | 85.0%                                                     | \$166,710       | 0.0%        | \$0             | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 0.0%                 | \$0              |  |
| 49   | U&M Year 49                 | LS      | % or Const.     | 0.0%                                                      | \$0             | 0.0%        | \$0             | 62.5%        | \$36,705           | 0.0%                              | \$0            | 0.0%                 | \$0              |  |
| 50   | U&M Year 50                 | LS      | % of Const.     | 0.0%                                                      | \$0             | 89.0%       | \$412,047       | 62.5%        | \$36,705           | 25.0%                             | \$176,600      | 50.0%                | \$10,030         |  |
|      |                             |         | 1               |                                                           | 07.000          | -           | ~               | -            | 05 000             | -                                 |                | -                    |                  |  |
|      | Total                       | U&M Cos | t per Location: | tion: \$2,667,363                                         |                 | \$4,1       | 20,468          | \$1,835,238  |                    | \$4,415,001                       |                | \$5                  | 0,149            |  |
|      |                             |         | nunency (30%):  | \$80                                                      | 0,209           | \$1,2       | 30,140          | \$550,571    |                    | \$1,324,500                       |                | \$15,045<br>\$65 193 |                  |  |
|      | Total U&M Cost: \$3,467,572 |         |                 |                                                           | 01,512          | \$5,3       | 50,608          | \$2,3        | 85,810             | \$5,7                             | 39,501         | \$65,193             |                  |  |



PROJECT: **Rio Grande Canalization Project - Alternative Cost Estimates** DETAIL: *Problem Location 2 - Cost and Quantities* COMPUTED BY: SKV CHECKED BY: IGP

# PROBLEM LOCATION 2: SALEM BRIDGE TO PLACITAS ARROYO

PROJECT NO: T33261 DATE: 8/25/2015

|          |                                                     |      |             |            | S                | ediment Rem | oval Alternativ | 105          |                    | No          | n-Sediment Re  | moval Altern          | atives                        |
|----------|-----------------------------------------------------|------|-------------|------------|------------------|-------------|-----------------|--------------|--------------------|-------------|----------------|-----------------------|-------------------------------|
| Item No. | Item Description                                    | UOM  | Unit Cost   | Channel Ex | cavation (Short) | Channel Exe | cavation (Long) | Channel Exca | vation (Localized) | Sediment Tr | aps in Arroyos | Island De<br>Vegetati | stabilization /<br>on Removal |
|          |                                                     |      |             | Quant.     | Total Cost       | Quant.      | Total Cost      | Quant.       | Total Cost         | Quant.      | Total Cost     | Quant.                | Total Cost                    |
| 1        | Mobilization / Demobilization                       | LS   | 12.50%      | 1          | \$86,196         | 1           | \$129,183       | 1            | \$46,806           | 1           | \$50,569       | 1                     | \$36,841                      |
| 2        | Site Access and Staging                             | LS   | 2.50%       | 1          | \$17,239         | 1           | \$25,837        | 1            | \$9,361            | 1           | \$10,114       | 1                     | \$7,368                       |
| 3        | Clearing and Grubbing                               | ACRE | \$2,000.00  | 4.4        | \$8,700          | 6.0         | \$12,000        | 1.4          | \$2,700            | 5.9         | \$11,800       | 34.7                  | \$69,400                      |
| 4        | Excavation (Sediment Removal)                       | CY   | \$2.75      | 84,580     | \$232,595        | 126,890     | \$348,948       | 46,180       | \$126,995          | 0           | \$0            | 27,991                | \$76,976                      |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY   | \$3.80      | 84,580     | \$321,404        | 126,890     | \$482,182       | 46,180       | \$175,484          | 0           | \$0            | 27,991                | \$106,367                     |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY   | \$1.50      | 84,580     | \$126,870        | 126,890     | \$190,335       | 46,180       | \$69,270           | 0           | \$0            | 27,991                | \$41,987                      |
| 7        | Excavation (Sediment Traps)                         | CY   | \$4.25      | 0          | \$0              | 0           | \$0             | 0            | \$0                | 33,982      | \$144,424      | 0                     | \$0                           |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF   | \$50.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 290         | \$14,500       | 0                     | \$0                           |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF   | \$75.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 325         | \$24,375       | 0                     | \$0                           |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF   | \$85.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 310         | \$26,350       | 0                     | \$0                           |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF   | \$30.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 305         | \$9,150        | 0                     | \$0                           |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF   | \$55.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 280         | \$15,400       | 0                     | \$0                           |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF   | \$70.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY   | \$3.50      | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY   | \$15.25     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 16       | Pilot Channel Excavation                            | CY   | \$6.50      | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 17       | Maintenance Road                                    | SF   | \$2.00      | 0          | \$0              | 0           | \$0             | 0            | \$0                | 19,275      | \$38,550       | 0                     | \$0                           |
| 18       | Debris Rack                                         | EA   | \$40,000.00 | 0          | \$0              | 0           | \$0             | 0            | \$0                | 3           | \$120,000      | 0                     | \$0                           |
| 19       | Structural Excavation                               | CY   | \$10.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 20       | Rock Removal                                        | CY   | \$20.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 21       | Sheet Pile Wall Demolition                          | LF   | \$100.00    | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 22       | Demo Existing Siphon                                | LF   | \$52.50     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 23       | Reinforced Concrete Box                             | CY   | \$800.00    | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 24       | Spur Dike Stone                                     | CY   | \$70.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 25       | Over-excavation (Spur Dikes)                        | CY   | \$10.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 26       | Compacted Backfill (Spur Dikes)                     | CY   | \$5.50      | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 27       | Bank Protection Bedding                             | CY   | \$40.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 28       | Bank Protection Riprap                              | CY   | \$70.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 29       | Concrete Sill                                       | CY   | \$625.00    | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 30       | Vortex Tube                                         | LF   | \$25.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 31       | Escape Channels                                     | LF   | \$35.00     | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 32       | Control Gate                                        | EA   | \$2,000.00  | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 33       | 12-in CMP Culvert                                   | EA   | \$1,500.00  | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 34       | Eastside Canal Overflow Check and Bypass            | EA   | \$800,000   | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 35       | Westside Canal Overflow Check and Bypass            | EA   | \$1,050,000 | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
| 36       | Mesilla Dam Gate Automation                         | EA   | \$1,000,000 | 0          | \$0              | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                     | \$0                           |
|          |                                                     |      |             |            |                  |             |                 |              |                    |             |                |                       |                               |

| Total Construction Cost per Alternative:   | \$793,004   | \$1,188,484 | \$430,616 | \$465,231 | \$338,940 |
|--------------------------------------------|-------------|-------------|-----------|-----------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$118,951   | \$178,273   | \$64,592  | \$69,785  | \$50,841  |
| Construction Management (CM - 10%)         | \$79,300    | \$118,848   | \$43,062  | \$46,523  | \$33,894  |
| Sub-total Cost (1):                        | \$991,255   | \$1,485,605 | \$538,270 | \$581,538 | \$423,675 |
| Construction Continency (30%):             | \$237,901   | \$356,545   | \$129,185 | \$139,569 | \$101,682 |
| Total Construction Cost:                   | \$1,229,157 | \$1,842,150 | \$667,455 | \$721,108 | \$525,357 |



PROJECT: Rio Grande Canalization Project - Alternative Cost Estimates DETAIL: Problem Location 2 - Cost and Quantities COMPUTED BY: SKV CHECKED BY: IGP

# PROBLEM LOCATION 2: SALEM BRIDGE TO PLACITAS ARROYO

PROJECT NO: T33261 DATE: 8/25/2015

| Page 2 of 2 |
|-------------|
|-------------|

|      |                                      |           |                                 | O&M C                                 | OSTS BY ALTE     | RNATIVE     |                          |              |                    |             |                  |                        |                              |
|------|--------------------------------------|-----------|---------------------------------|---------------------------------------|------------------|-------------|--------------------------|--------------|--------------------|-------------|------------------|------------------------|------------------------------|
|      |                                      |           |                                 |                                       | S                | ediment Rem | oval Alternativ          | es           |                    | No          | n-Sediment Rei   | moval Altern           | atives                       |
| Year | O&M Year                             | UOM       | Unit Cost                       | Channel Exc                           | cavation (Short) | Channel Exc | avation (Long)           | Channel Exca | vation (Localized) | Sediment Tr | aps in Arroyos   | Island Des<br>Vegetati | tabilization /<br>on Removal |
|      |                                      |           |                                 | O&M %                                 | Total Cost       | O&M %       | Total Cost               | O&M %        | Total Cost         | O&M %       | Total Cost       | O&M %                  | Total Cost                   |
| 1    | O&M Year 1                           | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 2    | O&M Year 2                           | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 3    | O&M Year 3                           | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 4    | O&M Year 4                           | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 25.0%                  | \$84,735                     |
| 5    | O&M Year 5                           | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 6    | O&M Year 6                           | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 30.0%       | \$139,569        | 0.0%                   | \$0                          |
| 7    | O&M Year 7                           | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 94.0%        | \$404,779          | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 8    | O&M Year 8                           | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 25.0%                  | \$84,735                     |
| 9    | O&M Year 9                           | LS        | % of Const.                     | 99.0%                                 | \$785,074        | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 10   | O&M Year 10                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 97.0%       | \$1,152,830              | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 11   | O&M Year 11                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 12   | O&M Year 12                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 30.0%       | \$139,569        | 25.0%                  | \$84,735                     |
| 13   | O&M Year 13                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 14   | O&M Year 14                          | LS        | % of Const.                     | 0.0%                                  | \$U<br>\$0       | 0.0%        | \$U<br>\$0               | 94.0%        | \$404,779          | 0.0%        | \$U<br>\$0       | 0.0%                   | \$0                          |
| 15   | O&M Year 15                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 16   | UGW Year 17                          | LS        | % of Const.                     | 0.0%                                  | \$U              | 0.0%        | \$0<br>\$0               | 0.0%         | \$U<br>\$0         | 0.0%        |                  | 25.0%                  | 904,730<br>¢0                |
| 17   | O&M Year 17                          | LS        | % of Const.                     | 0.0%                                  | \$U<br>\$795.074 | 0.0%        | \$U<br>\$0               | 0.0%         | \$U<br>\$0         | 0.0%        | \$U<br>\$130.560 | 0.0%                   | \$0<br>\$0                   |
| 18   | O&M Year 10                          | LS        | % of Const.                     | 0.0%                                  | \$100,014        | 0.0%        | 0¢                       | 0.0%         | \$0<br>\$0         | 0.0%        | \$139,509        | 0.0%                   | \$0<br>\$0                   |
| 19   | O&M Year 19                          | LS        | % of Const.                     | 0.0%                                  | \$U<br>\$0       | 0.0%        | ΦU<br>©1 152 920         | 0.0%         | \$0<br>\$0         | 0.0%        | \$0<br>\$0       | 25.0%                  | \$0<br>\$94 725              |
| 20   | O&M Year 21                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$1,132,030              | 0.076        | \$404 770          | 0.0%        | \$0<br>\$0       | 23.0%                  | \$04,733                     |
| 21   | O&M Year 22                          | LO        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0<br>\$0               | 0.0%         | \$0                | 0.0%        | \$0<br>\$0       | 0.0%                   | \$0<br>\$0                   |
| 22   | O&M Voor 22                          | 1.5       | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 23   | ORM Yoar 24                          | 1.5       | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 30.0%       | \$139.569        | 25.0%                  | \$84,735                     |
| 24   | O&M Year 25                          | 15        | % of Const                      | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 26   | O&M Year 26                          | 1.5       | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 27   | O&M Year 27                          | LS        | % of Const.                     | 99.0%                                 | \$785.074        | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 28   | O&M Year 28                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 94.0%        | \$404,779          | 0.0%        | \$0              | 25.0%                  | \$84,735                     |
| 29   | O&M Year 29                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 30   | O&M Year 30                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 97.0%       | \$1,152,830              | 0.0%         | \$0                | 30.0%       | \$139,569        | 0.0%                   | \$0                          |
| 31   | O&M Year 31                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 32   | O&M Year 32                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 25.0%                  | \$84,735                     |
| 33   | O&M Year 33                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 34   | O&M Year 34                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 35   | O&M Year 35                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 94.0%        | \$404,779          | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 36   | O&M Year 36                          | LS        | % of Const.                     | 99.0%                                 | \$785,074        | 0.0%        | \$0                      | 0.0%         | \$0                | 30.0%       | \$139,569        | 25.0%                  | \$84,735                     |
| 37   | O&M Year 37                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 38   | O&M Year 38                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 39   | O&M Year 39                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 40   | O&M Year 40                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 97.0%       | \$1,152,830              | 0.0%         | \$0                | 0.0%        | \$0              | 25.0%                  | \$84,735                     |
| 41   | O&M Year 41                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 42   | O&M Year 42                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 94.0%        | \$404,779          | 30.0%       | \$139,569        | 0.0%                   | \$0                          |
| 43   | O&M Year 43                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 44   | O&M Year 44                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 25.0%                  | \$84,735                     |
| 45   | O&M Year 45                          | LS        | % of Const.                     | 99.0%                                 | \$785,074        | 0.0%        | \$0                      | 0.0%         | \$0                | 0.0%        | \$0              | 0.0%                   | \$0                          |
| 46   | U&M Year 46                          | LS        | % of Const.                     | 0.0%                                  | \$0              | 0.0%        | \$U<br>\$0               | 0.0%         | \$U<br>\$0         | 0.0%        | \$U<br>\$0       | 0.0%                   | \$U<br>\$0                   |
| 47   | UGM Year 49                          | LS        | % of Const.                     | 0.0%                                  | \$0<br>\$0       | 0.0%        | \$0<br>\$0               | 0.0%         | \$U<br>\$0         | 20.0%       |                  | 25.0%                  | φU<br>\$94.725               |
| 48   |                                      | LO        | % of Const                      | 0.0%                                  | \$0<br>\$0       | 0.0%        | οφυ<br>\$0               | 94.0%        | \$404.779          | 0.0%        | \$139,009        | 25.0%                  | \$04,733                     |
| 49   | ORM Yoar 50                          | 10        | % of Const                      | 0.0%                                  | 0¢<br>02         | 0.0%        | ψU<br>\$1 152 920        | 0.0%         | \$0<br>\$0         | 0.0%        | φU<br>¢n         | 0.0%                   | 90<br>\$0                    |
| 50   | Uorivi real SU                       | LO        | 70 UI CUIISI.                   | 0.0%                                  | φU               | 97.0%       | ψ1,102,030               | 0.0%         | φU                 | 0.0%        | φU               | 0.0%                   | φU                           |
|      | Total                                | O&M Cor   | t per Location                  | ¢2.0                                  | 25 372           | ¢5.7        | 64 148                   | ¢0.0         | 33.456             | ¢1 1        | 16 554           | ¢1.0                   | 16.819                       |
|      | 1014                                 | O&M Cor   | A Continency (30%): \$1 177 611 |                                       | \$3,7<br>\$1 7   | 29 244      | \$2,833,450<br>\$850,037 |              | \$1,110,554        |             | \$305.046        |                        |                              |
|      |                                      | Total Con | struction Cost                  | \$5.1                                 | 02.983           | \$7.4       | 93.393                   | \$3.6        | 83.492             | \$1 d       | 51.520           | \$1.3                  | 21.865                       |
|      | Total Construction Cost: \$5,102,983 |           |                                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -, , ,           | ,           | φ0,0                     |              | - را ب             | ,           | <b>\$1,0</b>     | ,                      |                              |



# PROBLEM LOCATION 3: RINCON SIPHON A RESTORATION SITE TO RINCON SIPHON

| Page | 1 of | 2 |
|------|------|---|

|          |                                                     |           |             |             | ION COSTS BT     | ALTERNAT    |                  |              |                    | N-          | . Cadimant Day |                  |                         |
|----------|-----------------------------------------------------|-----------|-------------|-------------|------------------|-------------|------------------|--------------|--------------------|-------------|----------------|------------------|-------------------------|
|          |                                                     |           |             |             | 5                | ediment Ken | noval Alternativ | es           |                    | NO          | n-Sediment Rei | noval Altern     | atives                  |
| Item No. | Item Description                                    | UOM       | Unit Cost   | Channel Exe | cavation (Short) | Channel Ex  | cavation (Long)  | Channel Exca | vation (Localized) | Sediment Tr | aps in Arroyos | Replace Rin<br>F | con Siphon with<br>lume |
|          |                                                     |           |             | Quant.      | Total Cost       | Quant.      | Total Cost       | Quant.       | Total Cost         | Quant.      | Total Cost     | Quant.           | Total Cost              |
| 1        | Mobilization / Demobilization                       | LS        | 12.50%      | 1           | \$17,623         | 1           | \$37,195         | 1            | \$11,488           | 1           | \$10,844       | 1                | \$139,511               |
| 2        | Site Access and Staging                             | LS        | 2.50%       | 1           | \$3,525          | 1           | \$7,439          | 1            | \$2,298            | 1           | \$2,169        | 1                | \$27,902                |
| 3        | Clearing and Grubbing                               | ACRE      | \$2,000.00  | 1.2         | \$2,360          | 2.4         | \$4,780          | 0.4          | \$700              | 0.6         | \$1,200        | 0.5              | \$1,000                 |
| 4        | Excavation (Sediment Removal)                       | CY        | \$2.75      | 17,220      | \$47,355         | 36,370      | \$100,018        | 11,330       | \$31,158           | 0           | \$0            | 0                | \$0                     |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY        | \$3.80      | 17,220      | \$65,436         | 36,370      | \$138,206        | 11,330       | \$43,054           | 0           | \$0            | 0                | \$0                     |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY        | \$1.50      | 17,220      | \$25,830         | 36,370      | \$54,555         | 11,330       | \$16,995           | 0           | \$0            | 0                | \$0                     |
| 7        | Excavation (Sediment Traps)                         | CY        | \$4.25      | 0           | \$0              | 0           | \$0              | 0            | \$0                | 2,765       | \$11,751       | 0                | \$0                     |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF        | \$50.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF        | \$75.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 95          | \$7,125        | 0                | \$0                     |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF        | \$85.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 140         | \$11,900       | 0                | \$0                     |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF        | \$30.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 110         | \$3,300        | 0                | \$0                     |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF        | \$55.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 45          | \$2,475        | 0                | \$0                     |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF        | \$70.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY        | \$3.50      | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY        | \$15.25     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 16       | Pilot Channel Excavation                            | CY        | \$6.50      | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 17       | Maintenance Road                                    | SF        | \$2.00      | 0           | \$0              | 0           | \$0              | 0            | \$0                | 4,500       | \$9,000        | 0                | \$0                     |
| 18       | Debris Rack                                         | EA        | \$40,000.00 | 0           | \$0              | 0           | \$0              | 0            | \$0                | 1           | \$40,000       | 0                | \$0                     |
| 19       | Structural Excavation                               | CY        | \$10.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 3,000            | \$30,000                |
| 20       | Rock Removal                                        | CY        | \$20.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 12,370           | \$247,400               |
| 21       | Sheet Pile Wall Demolition                          | LF        | \$100.00    | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 1,675            | \$167,500               |
| 22       | Demo Existing Siphon                                | LF        | \$52.50     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 575              | \$30,188                |
| 23       | Reinforced Concrete Box                             | CY        | \$800.00    | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 800              | \$640,000               |
| 24       | Spur Dike Stone                                     | CY        | \$70.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 25       | Over-excavation (Spur Dikes)                        | CY        | \$10.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 26       | Compacted Backfill (Spur Dikes)                     | CY        | \$5.50      | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 27       | Bank Protection Bedding                             | CY        | \$40.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 28       | Bank Protection Riprap                              | CY        | \$70.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 29       | Concrete Sill                                       | CY        | \$625.00    | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 30       | Vortex Tube                                         | LF        | \$25.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 31       | Escape Channels                                     | LF        | \$35.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 32       | Control Gate                                        | EA        | \$2,000.00  | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 33       | 12-in CMP Culvert                                   | EA        | \$1,500.00  | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 34       | Eastside Canal Overflow Check and Bypass            | EA        | \$800,000   | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 35       | Westside Canal Overflow Check and Bypass            | EA        | \$1,050,000 | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
| 36       | Mesilla Dam Gate Automation                         | EA        | \$1,000,000 | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                | \$0                     |
|          |                                                     |           |             |             |                  |             |                  |              |                    |             |                |                  |                         |
|          | Tatal Constant                                      | 41-m 0+ - |             | C 4 /       | 20.400           | ¢0          | 10 400           | C 4 (        | 05 000             | ¢0          | 0.704          | C4 (             | 00 504                  |

| Total Construction Cost per Alternative:   | \$162,128 | \$342,192 | \$105,692 | \$99,764  | \$1,283,501 |
|--------------------------------------------|-----------|-----------|-----------|-----------|-------------|
| Planning, Engineering & Design (PED - 15%) | \$24,319  | \$51,329  | \$15,854  | \$14,965  | \$192,525   |
| Construction Management (CM - 10%)         | \$16,213  | \$34,219  | \$10,569  | \$9,976   | \$128,350   |
| Sub-total Cost (1):                        | \$202,660 | \$427,740 | \$132,116 | \$124,705 | \$1,604,376 |
| Construction Continency (30%):             | \$48,638  | \$102,658 | \$31,708  | \$29,929  | \$385,050   |
| Total Construction Cost:                   | \$251,299 | \$530,398 | \$163,823 | \$154,634 | \$1,989,426 |



Page 2 of 2

|                                      | O&M COSTS BY ALTERNATIVE |                                 |                 |             |                  |             |                 |               |                   |             |                |                                     |            |  |
|--------------------------------------|--------------------------|---------------------------------|-----------------|-------------|------------------|-------------|-----------------|---------------|-------------------|-------------|----------------|-------------------------------------|------------|--|
|                                      |                          |                                 |                 |             | S                | ediment Rem | oval Alternativ | es            |                   | No          | n-Sediment Rei | noval Altern                        | atives     |  |
| Year                                 | O&M Year                 | UOM                             | Unit Cost       | Channel Exc | cavation (Short) | Channel Exc | cavation (Long) | Channel Excav | ation (Localized) | Sediment Tr | aps in Arroyos | Replace Rincon Siphon with<br>Flume |            |  |
|                                      |                          |                                 |                 | O&M %       | Total Cost       | O&M %       | Total Cost      | O&M %         | Total Cost        | O&M %       | Total Cost     | O&M %                               | Total Cost |  |
| 1                                    | O&M Year 1               | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 2                                    | O&M Year 2               | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 3                                    | O&M Year 3               | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 4                                    | O&M Year 4               | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 11.7%       | \$11,672       | 0.0%                                | \$0        |  |
| 5                                    | O&M Year 5               | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 6                                    | O&M Year 6               | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 7                                    | O&M Year 7               | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 94.0%         | \$99,351          | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 8                                    | O&M Year 8               | LS                              | % of Const.     | 91.0%       | \$147,537        | 0.0%        | \$0             | 0.0%          | \$0               | 11.7%       | \$11,672       | 5.0%                                | \$64,175   |  |
| 9                                    | O&M Year 9               | LS                              | % of Const.     | 0.0%        | \$0              | 93.0%       | \$318,239       | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 10                                   | O&M Year 10              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 11                                   | O&M Year 11              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 12                                   | O&M Year 12              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 11.7%       | \$11,672       | 0.0%                                | \$0        |  |
| 13                                   | O&M Year 13              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 14                                   | O&M Year 14              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 94.0%         | \$99,351          | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 15                                   | O&M Year 15              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 16                                   | O&M Year 16              | LS                              | % of Const.     | 91.0%       | \$147,537        | 0.0%        | \$0             | 0.0%          | \$0               | 11.7%       | \$11,672       | 0.0%                                | \$0        |  |
| 17                                   | O&M Year 17              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 18                                   | O&M Year 18              | LS                              | % of Const.     | 0.0%        | \$0              | 93.0%       | \$318,239       | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 19                                   | O&M Year 19              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 20                                   | O&M Year 20              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 11.7%       | \$11,672       | 5.0%                                | \$64,175   |  |
| 21                                   | O&M Year 21              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 94.0%         | \$99,351          | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 22                                   | O&M Year 22              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 23                                   | O&M Year 23              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 24                                   | O&M Year 24              | LS                              | % of Const.     | 91.0%       | \$147,537        | 0.0%        | \$0             | 0.0%          | \$0               | 11.7%       | \$11,672       | 0.0%                                | \$0        |  |
| 25                                   | O&M Year 25              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 26                                   | O&M Year 26              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 27                                   | O&M Year 27              | LS                              | % of Const.     | 0.0%        | \$0              | 93.0%       | \$318,239       | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 28                                   | O&M Year 28              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 94.0%         | \$99,351          | 11.7%       | \$11,672       | 0.0%                                | \$0        |  |
| 29                                   | O&M Year 29              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 30                                   | O&M Year 30              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 5.0%                                | \$64,175   |  |
| 31                                   | O&M Year 31              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 32                                   | O&M Year 32              | LS                              | % of Const.     | 91.0%       | \$147,537        | 0.0%        | \$0             | 0.0%          | \$0               | 11.7%       | \$11,672       | 0.0%                                | \$0        |  |
| 33                                   | O&M Year 33              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 34                                   | O&M Year 34              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 35                                   | O&M Year 35              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 94.0%         | \$99,351          | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 36                                   | O&M Year 36              | LS                              | % of Const.     | 0.0%        | \$0              | 93.0%       | \$318,239       | 0.0%          | \$0               | 11.7%       | \$11,672       | 0.0%                                | \$0        |  |
| 37                                   | O&M Year 37              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 38                                   | O&M Year 38              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 39                                   | O&M Year 39              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 40                                   | O&M Year 40              | LS                              | % of Const.     | 91.0%       | \$147,537        | 0.0%        | \$0             | 0.0%          | \$0               | 11.7%       | \$11,672       | 5.0%                                | \$64,175   |  |
| 41                                   | O&M Year 41              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 42                                   | O&M Year 42              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 94.0%         | \$99,351          | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 43                                   | O&M Year 43              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 44                                   | O&M Year 44              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 11.7%       | \$11,672       | 0.0%                                | \$0        |  |
| 45                                   | O&M Year 45              | LS                              | % of Const.     | 0.0%        | \$0              | 93.0%       | \$318,239       | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 46                                   | O&M Year 46              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 47                                   | O&M Year 47              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 48                                   | O&M Year 48              | LS                              | % of Const.     | 91.0%       | \$147,537        | 0.0%        | \$0             | 0.0%          | \$0               | 11.7%       | \$11,672       | 0.0%                                | \$0        |  |
| 49                                   | O&M Year 49              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 94.0%         | \$99,351          | 0.0%        | \$0            | 0.0%                                | \$0        |  |
| 50                                   | O&M Year 50              | LS                              | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0            | 5.0%                                | \$64,175   |  |
|                                      |                          |                                 |                 |             |                  |             |                 |               |                   |             |                |                                     |            |  |
|                                      | Tota                     | O&M Cos                         | t per Location: | \$88        | 35,220           | \$1,5       | 91,194          | \$69          | 5,456             | \$14        | 10,069         | \$32                                | 20,875     |  |
|                                      |                          | O&M Continency (30%): \$265,566 |                 | 65,566      | \$47             | 7,358       | \$208,637       |               | \$42,021          |             | \$96,263       |                                     |            |  |
| Total Construction Cost: \$1,150,786 |                          |                                 | \$2,068,552     |             | \$904,093        |             | \$182,089       |               | \$417,138         |             |                |                                     |            |  |



PROJECT: Rio Grande Canalization Project - Alternative Cost Estimates DETAIL: Problem Location 4 - Cost and Quantities COMPUTED BY: SKV CHECKED BY: IGP

PROBLEM LOCATION 4: RINCON ARROYO TO BIGNELL ARROYO

PROJECT NO: T33261 DATE: 8/25/2015

Page 1 of 2

|                                         |                                                     |      | (           | CONSTRUCT   | ION COSTS BY     | ALTERNAT    | VE              |              |                    |                                        |                |                          |            |
|-----------------------------------------|-----------------------------------------------------|------|-------------|-------------|------------------|-------------|-----------------|--------------|--------------------|----------------------------------------|----------------|--------------------------|------------|
|                                         |                                                     |      |             |             | S                | ediment Rem | oval Alternativ | es           |                    | No                                     | n-Sediment Rer | noval Altern             | atives     |
| Item No.                                | Item Description                                    | UOM  | Unit Cost   | Channel Exe | cavation (Short) | Channel Exc | cavation (Long) | Channel Exca | vation (Localized) | Island Destabilization / Spur<br>Dikes |                | Low-Elevation Spur Dikes |            |
|                                         |                                                     |      |             | Quant.      | Total Cost       | Quant.      | Total Cost      | Quant.       | Total Cost         | Quant.                                 | Total Cost     | Quant.                   | Total Cost |
| 1                                       | Mobilization / Demobilization                       | LS   | 12.50%      | 1           | \$66,068         | 1           | \$224,365       | 1            | \$38,485           | 1                                      | \$46,609       | 1                        | \$40,631   |
| 2                                       | Site Access and Staging                             | LS   | 2.50%       | 1           | \$13,214         | 1           | \$44,873        | 1            | \$7,697            | 1                                      | \$9,322        | 1                        | \$8,126    |
| 3                                       | Clearing and Grubbing                               | ACRE | \$2,000.00  | 1.5         | \$2,960          | 5.6         | \$11,120        | 0.8          | \$1,660            | 43.9                                   | \$87,800       | 1.0                      | \$2,000    |
| 4                                       | Excavation (Sediment Removal)                       | CY   | \$2.75      | 65,290      | \$179,548        | 221,590     | \$609,373       | 38,040       | \$104,610          | 35,413                                 | \$97,385       | 0                        | \$0        |
| 5                                       | Load/Haul to Local Disposal Site (Sediment Removal) | CY   | \$3.80      | 65,290      | \$248,102        | 221,590     | \$842,042       | 38,040       | \$144,552          | 35,413                                 | \$134,568      | 0                        | \$0        |
| 6                                       | Compacted Fill at Disposal Site (Sediment Removal)  | CY   | \$1.50      | 65,290      | \$97,935         | 221,590     | \$332,385       | 38,040       | \$57,060           | 35,413                                 | \$53,119       | 0                        | \$0        |
| 7                                       | Excavation (Sediment Traps)                         | CY   | \$4.25      | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 8                                       | 1-ft Rebar Mesh (Sediment Trap)                     | LF   | \$50.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 9                                       | 8-in Rebar Mesh (Sediment Trap)                     | LF   | \$75.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 10                                      | 6-in Rebar Mesh (Sediment Trap)                     | LF   | \$85.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 11                                      | 4-in Wire Mesh (Sediment Trap)                      | LF   | \$30.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 12                                      | 2-in Wire Mesh (Sediment Trap)                      | LF   | \$55.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 13                                      | 1-in Wire Mesh (Sediment Trap)                      | LF   | \$70.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 14                                      | Compacted Fill (Sediment Trap Berm)                 | CY   | \$3.50      | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 15                                      | Rock Slope Protection (Sediment Trap Berm)          | CY   | \$15.25     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 16                                      | Pilot Channel Excavation                            | CY   | \$6.50      | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 17                                      | Maintenance Road                                    | SF   | \$2.00      | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 18                                      | Debris Rack                                         | EA   | \$40,000.00 | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 19                                      | Structural Excavation                               | CY   | \$10.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 20                                      | Rock Removal                                        | CY   | \$20.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 21                                      | Sheet Pile Wall Demolition                          | LF   | \$100.00    | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 22                                      | Demo Existing Siphon                                | LF   | \$52.50     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 23                                      | Reinforced Concrete Box                             | CY   | \$800.00    | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 24                                      | Spur Dike Stone                                     | CY   | \$70.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 4,245                    | \$297,150  |
| 25                                      | Over-excavation (Spur Dikes)                        | CY   | \$10.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 2,123                    | \$21,230   |
| 26                                      | Compacted Backfill (Spur Dikes)                     | CY   | \$5.50      | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 849                      | \$4,670    |
| 27                                      | Bank Protection Bedding                             | CY   | \$40.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 28                                      | Bank Protection Riprap                              | CY   | \$70.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 29                                      | Concrete Sill                                       | CY   | \$625.00    | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 30                                      | Vortex Tube                                         | LF   | \$25.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 31                                      | Escape Channels                                     | LF   | \$35.00     | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 32                                      | Control Gate                                        | EA   | \$2,000.00  | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 33                                      | 12-in CMP Culvert                                   | EA   | \$1,500.00  | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 34                                      | Eastside Canal Overflow Check and Bypass            | EA   | \$800,000   | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 35                                      | Westside Canal Overflow Check and Bypass            | EA   | \$1,050,000 | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| 36                                      | Mesilla Dam Gate Automation                         | EA   | \$1,000,000 | 0           | \$0              | 0           | \$0             | 0            | \$0                | 0                                      | \$0            | 0                        | \$0        |
| Total Construction Cost par Altornative |                                                     |      |             |             | 7.000            | ¢0.0        | C4 457          | <b>^</b>     | 4.004              | ¢ 4                                    | 0.000          | ¢0.                      | 70.007     |

| Total Construction Cost per Alternative:   | \$607,826 | \$2,064,157 | \$354,064 | \$428,803 | \$373,807 |
|--------------------------------------------|-----------|-------------|-----------|-----------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$91,174  | \$309,624   | \$53,110  | \$64,320  | \$56,071  |
| Construction Management (CM - 10%)         | \$60,783  | \$206,416   | \$35,406  | \$42,880  | \$37,381  |
| Sub-total Cost (1):                        | \$759,783 | \$2,580,197 | \$442,580 | \$536,003 | \$467,259 |
| Construction Continency (30%):             | \$182,348 | \$619,247   | \$106,219 | \$128,641 | \$112,142 |
| Total Construction Cost:                   | \$942,131 | \$3,199,444 | \$548,800 | \$664,644 | \$579,401 |
|                                            |           |             |           |           |           |



PROJECT: **Rio Grande Canalization Project - Alternative Cost Estimates** DETAIL: *Problem Location 4 - Cost and Quantities* COMPUTED BY: SKV CHECKED BY: IGP

PROBLEM LOCATION 4: RINCON ARROYO TO BIGNELL ARROYO

Page 2 of 2

|         |             |            |                 | O&M C       | OSTS BY ALTE     | RNATIVE     |                    |               |                    | No    | n Cadimant Day    |                          |                |  |
|---------|-------------|------------|-----------------|-------------|------------------|-------------|--------------------|---------------|--------------------|-------|-------------------|--------------------------|----------------|--|
|         |             |            |                 |             | 5                | eaiment Ken | ioval Alternativ   | es            |                    | NO    | n-Sealment Ker    | siloval Alternatives     |                |  |
| Year    | O&M Year    | UOM        | Unit Cost       | Channel Exc | avation (Short)  | Channel Exe | cavation (Long)    | Channel Excav | vation (Localized) | Dikes |                   | Low-Elevation Spur Dikes |                |  |
|         |             |            |                 | O&M %       | Total Cost       | O&M %       | Total Cost         | O&M %         | Total Cost         | O&M % | Total Cost        | O&M %                    | Total Cost     |  |
| 1       | O&M Year 1  | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 2       | O&M Year 2  | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 3       | O&M Year 3  | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 4       | O&M Year 4  | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 25.0% | \$107,201         | 0.0%                     | \$0            |  |
| 5       | O&M Year 5  | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 15.0%                    | \$56,071       |  |
| 6       | O&M Year 6  | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 7       | O&M Year 7  | LS         | % of Const.     | 0.0%        | \$U<br>© 455 070 | 0.0%        | \$0                | 0.0%          | \$U<br>\$005.540   | 0.0%  | \$U<br>\$107.001  | 0.0%                     | \$0            |  |
| 8       | O&M Year 8  | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$U<br>\$1.010.666 | 75.0%         | \$265,548          | 25.0% | \$107,201         | 0.0%                     | \$U<br>\$0     |  |
| y<br>to | O&M Year 9  | LS         | % of Const.     | 75.0%       | ΦU<br>© 455 970  | 93.0%       | \$1,919,000        | 75.09/        | \$0<br>€265 E49    | 0.0%  | \$U<br>\$0        | 0.0%                     | \$U<br>€03.453 |  |
| 10      | O&M Year 10 | LS         | % of Const.     | 0.0%        | \$435,870        | 0.0%        | \$0<br>\$0         | 75.0%         | \$205,546          | 0.0%  | \$0<br>\$0        | 25.0%                    | \$93,432       |  |
| 11      | Own Year 11 | LS         | % of Const.     | 75.0%       | \$455.970        | 0.0%        | \$0<br>\$0         | 75.0%         | \$0<br>\$265.549   | 25.0% | \$U<br>\$107.201  | 0.0%                     | \$0<br>\$0     |  |
| 12      | O&M Year 12 | LS         | % of Const.     | 0.0%        | \$435,870        | 0.0%        | \$0<br>\$0         | 75.0%         | \$205,546          | 25.0% | \$107,201         | 0.0%                     | \$U            |  |
| 13      | Own Year 13 | LS         | % of Const.     | 75.0%       | \$455.970        | 0.0%        | \$0<br>\$0         | 75.0%         | \$0<br>\$265.549   | 0.0%  | \$0<br>\$0        | 0.0%                     | \$0<br>\$0     |  |
| 14      | O&M Year 14 | LS         | % of Const.     | 0.0%        | \$433,870        | 0.0%        | 0¢<br>02           | 0.0%          | \$205,546          | 0.0%  | \$0<br>\$0        | 15.0%                    | \$56.071       |  |
| 10      | ORM Veer 16 | 1.0        | % of Const      | 75.0%       | \$455.870        | 0.0%        | \$0<br>\$0         | 75.0%         | \$265 548          | 25.0% | \$107 201         | 0.0%                     | \$0,071        |  |
| 10      | O&M Voor 17 | 1.5        | % of Const      | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 19      | OMM Year 19 | 1.5        | % of Const      | 75.0%       | \$455.870        | 93.0%       | \$1 919 666        | 75.0%         | \$265 548          | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 10      | O&M Year 19 | 15         | % of Const      | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 20      | O&M Year 20 | 15         | % of Const.     | 75.0%       | \$455.870        | 0.0%        | \$0                | 75.0%         | \$265.548          | 25.0% | \$107.201         | 25.0%                    | \$93.452       |  |
| 20      | O&M Year 21 | 1.5        | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 22      | O&M Year 22 | 1.5        | % of Const.     | 75.0%       | \$455.870        | 0.0%        | \$0                | 75.0%         | \$265.548          | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 23      | O&M Year 23 | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 24      | O&M Year 24 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 25.0% | \$107,201         | 0.0%                     | \$0            |  |
| 25      | O&M Year 25 | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 15.0%                    | \$56,071       |  |
| 26      | O&M Year 26 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 27      | O&M Year 27 | LS         | % of Const.     | 0.0%        | \$0              | 93.0%       | \$1,919,666        | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 28      | O&M Year 28 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 25.0% | \$107,201         | 0.0%                     | \$0            |  |
| 29      | O&M Year 29 | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 30      | O&M Year 30 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 0.0%  | \$0               | 25.0%                    | \$93,452       |  |
| 31      | O&M Year 31 | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 32      | O&M Year 32 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 25.0% | \$107,201         | 0.0%                     | \$0            |  |
| 33      | O&M Year 33 | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 34      | O&M Year 34 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 35      | O&M Year 35 | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 15.0%                    | \$56,071       |  |
| 36      | O&M Year 36 | LS         | % of Const.     | 75.0%       | \$455,870        | 93.0%       | \$1,919,666        | 75.0%         | \$265,548          | 25.0% | \$107,201         | 0.0%                     | \$0            |  |
| 37      | O&M Year 37 | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 38      | O&M Year 38 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 39      | O&M Year 39 | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 40      | O&M Year 40 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 25.0% | \$107,201         | 25.0%                    | \$93,452       |  |
| 41      | O&M Year 41 | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 42      | O&M Year 42 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 43      | O&M Year 43 | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 44      | O&M Year 44 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 25.0% | \$107,201         | 0.0%                     | \$0            |  |
| 45      | O&M Year 45 | LS         | % of Const.     | 0.0%        | \$0              | 93.0%       | \$1,919,666        | 0.0%          | \$0                | 0.0%  | \$0               | 15.0%                    | \$56,071       |  |
| 46      | O&M Year 46 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 47      | O&M Year 47 | LS         | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 48      | U&M Year 48 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 25.0% | \$107,201         | 0.0%                     | \$0            |  |
| 49      | O&M Year 49 | LS         | % or Const.     | 0.0%        | \$0              | 0.0%        | \$0                | 0.0%          | \$0                | 0.0%  | \$0               | 0.0%                     | \$0            |  |
| 50      | U&M Year 50 | LS         | % of Const.     | 75.0%       | \$455,870        | 0.0%        | \$0                | 75.0%         | \$265,548          | 0.0%  | \$0               | 25.0%                    | \$93,452       |  |
|         |             |            |                 | <b>**</b>   | 000 744          | Ac -        | 00.000             | Ac -          | 200 700            | A     | 000 400           | A                        | 7 644          |  |
|         | Total       | U&W Cos    | t per Location: | \$11,3      | 390,741          | \$9,5       | 98,332             | \$6,6         | 38,706             | \$1,2 | 200,408           | \$74                     | 47,014         |  |
|         |             | Total Con  | struction Cost  | \$3,4       | 19,022           | \$2,8       | 477 932            | \$1,9         | 30 317             | \$38  | 30,9∠∠<br>372 221 | \$22                     | 24,284         |  |
|         |             | i otai CON | Su action COST. | φ14,        | 515,765          | ,z۱۷,       | +11,032            | \$8,0         | 30,317             | ¢1,6  | 112,331           | \$97                     | 1,030          |  |



PROJECT: **Rio Grande Canalization Project - Alternative Cost Estimates** DETAIL: *Problem Location 5 - Cost and Quantities* COMPUTED BY: SKV CHECKED BY: IGP PROJECT NO: T33261 DATE: 8/25/2015

| -    |   |      |  |
|------|---|------|--|
| Page | 1 | of 2 |  |

|          | Sediment Removal Alternatives Non-Sediment Removal Alternatives |      |             |                                                                     |            |         |            |             |                |                          |            |        |            |
|----------|-----------------------------------------------------------------|------|-------------|---------------------------------------------------------------------|------------|---------|------------|-------------|----------------|--------------------------|------------|--------|------------|
| Item No. | Item Description                                                | UOM  | Unit Cost   | Unit Cost Channel Excavation (Short) Channel Excavation (Localized) |            |         |            | Sediment Tr | aps in Arroyos | Low-Elevation Spur Dikes |            |        |            |
|          |                                                                 |      |             | Quant.                                                              | Total Cost | Quant.  | Total Cost | Quant.      | Total Cost     | Quant.                   | Total Cost | Quant. | Total Cost |
| 1        | Mobilization / Demobilization                                   | LS   | 12.50%      | 1                                                                   | \$101,873  | 1       | \$224,622  | 1           | \$72,138       | 1                        | \$31,234   | 1      | \$62,711   |
| 2        | Site Access and Staging                                         | LS   | 2.50%       | 1                                                                   | \$20,375   | 1       | \$44,924   | 1           | \$14,428       | 1                        | \$6,247    | 1      | \$12,542   |
| 3        | Clearing and Grubbing                                           | ACRE | \$2,000.00  | 1.3                                                                 | \$2,580    | 5.4     | \$10,840   | 1.8         | \$3,620        | 2.9                      | \$5,800    | 1.5    | \$3,000    |
| 4        | Excavation (Sediment Removal)                                   | CY   | \$2.75      | 100,920                                                             | \$277,530  | 221,880 | \$610,170  | 71,240      | \$195,910      | 0                        | \$0        | 0      | \$0        |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal)             | CY   | \$3.80      | 100,920                                                             | \$383,496  | 221,880 | \$843,144  | 71,240      | \$270,712      | 0                        | \$0        | 0      | \$0        |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)              | CY   | \$1.50      | 100,920                                                             | \$151,380  | 221,880 | \$332,820  | 71,240      | \$106,860      | 0                        | \$0        | 0      | \$0        |
| 7        | Excavation (Sediment Traps)                                     | CY   | \$4.25      | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 14,162                   | \$60,189   | 0      | \$0        |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                                 | LF   | \$50.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 150                      | \$7,500    | 0      | \$0        |
| 9        | 8-in Rebar Mesh (Sediment Trap)                                 | LF   | \$75.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 245                      | \$18,375   | 0      | \$0        |
| 10       | 6-in Rebar Mesh (Sediment Trap)                                 | LF   | \$85.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 250                      | \$21,250   | 0      | \$0        |
| 11       | 4-in Wire Mesh (Sediment Trap)                                  | LF   | \$30.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 210                      | \$6,300    | 0      | \$0        |
| 12       | 2-in Wire Mesh (Sediment Trap)                                  | LF   | \$55.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 175                      | \$9,625    | 0      | \$0        |
| 13       | 1-in Wire Mesh (Sediment Trap)                                  | LF   | \$70.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 14       | Compacted Fill (Sediment Trap Berm)                             | CY   | \$3.50      | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 860                      | \$3,010    | 0      | \$0        |
| 15       | Rock Slope Protection (Sediment Trap Berm)                      | CY   | \$15.25     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 100                      | \$1,525    | 0      | \$0        |
| 16       | Pilot Channel Excavation                                        | CY   | \$6.50      | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 17       | Maintenance Road                                                | SF   | \$2.00      | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 18,150                   | \$36,300   | 0      | \$0        |
| 18       | Debris Rack                                                     | EA   | \$40,000.00 | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 2                        | \$80,000   | 0      | \$0        |
| 19       | Structural Excavation                                           | CY   | \$10.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 20       | Rock Removal                                                    | CY   | \$20.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 21       | Sheet Pile Wall Demolition                                      | LF   | \$100.00    | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 22       | Demo Existing Siphon                                            | LF   | \$52.50     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 23       | Reinforced Concrete Box                                         | CY   | \$800.00    | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 24       | Spur Dike Stone                                                 | CY   | \$70.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 6,553  | \$458,710  |
| 25       | Over-excavation (Spur Dikes)                                    | CY   | \$10.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 3,277  | \$32,770   |
| 26       | Compacted Backfill (Spur Dikes)                                 | CY   | \$5.50      | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 1,311  | \$7,211    |
| 27       | Bank Protection Bedding                                         | CY   | \$40.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 28       | Bank Protection Riprap                                          | CY   | \$70.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 29       | Concrete Sill                                                   | CY   | \$625.00    | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 30       | Vortex Tube                                                     | LF   | \$25.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 31       | Escape Channels                                                 | LF   | \$35.00     | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 32       | Control Gate                                                    | EA   | \$2,000.00  | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 33       | 12-in CMP Culvert                                               | EA   | \$1,500.00  | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 34       | Eastside Canal Overflow Check and Bypass                        | EA   | \$800,000   | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 35       | Westside Canal Overflow Check and Bypass                        | EA   | \$1,050,000 | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
| 36       | Mesilla Dam Gate Automation                                     | EA   | \$1,000,000 | 0                                                                   | \$0        | 0       | \$0        | 0           | \$0            | 0                        | \$0        | 0      | \$0        |
|          |                                                                 |      |             |                                                                     |            | -       |            |             |                |                          |            |        |            |

| Total Construction Cost per Alternative:   | \$937,234   | \$2,066,520 | \$663,667   | \$287,355 | \$576,944 |
|--------------------------------------------|-------------|-------------|-------------|-----------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$140,585   | \$309,978   | \$99,550    | \$43,103  | \$86,542  |
| Construction Management (CM - 10%)         | \$93,723    | \$206,652   | \$66,367    | \$28,735  | \$57,694  |
| Sub-total Cost (1):                        | \$1,171,542 | \$2,583,150 | \$829,584   | \$359,193 | \$721,180 |
| Construction Continency (30%):             | \$281,170   | \$619,956   | \$199,100   | \$86,206  | \$173,083 |
| Total Construction Cost:                   | \$1,452,713 | \$3,203,106 | \$1,028,684 | \$445,400 | \$894,263 |



PROJECT: Rio Grande Canalization Project - Alternative Cost Estimates DETAIL: Problem Location 5 - Cost and Quantities COMPUTED BY: SKV CHECKED BY: IGP

# PROBLEM LOCATION 5: ROCK CANYON TO BELOW RINCON/TONUCO DRAIN OUTLET

| Page | 2 | of | 2 |
|------|---|----|---|

|      |             |            |                 | O&M C        | OSTS BY ALTE    | RNATIVE      |                  |               |                    |             |                 |                          |                  |
|------|-------------|------------|-----------------|--------------|-----------------|--------------|------------------|---------------|--------------------|-------------|-----------------|--------------------------|------------------|
|      |             |            |                 |              | S               | ediment Rem  | oval Alternativ  | es            |                    | No          | n-Sediment Rer  | moval Alterna            | atives           |
| Year | O&M Year    | UOM        | Unit Cost       | Channel Exc  | avation (Short) | Channel Exc  | cavation (Long)  | Channel Excav | vation (Localized) | Sediment Tr | aps in Arroyos  | Low-Elevation Spur Dikes |                  |
|      |             |            |                 | O&M %        | Total Cost      | O&M %        | Total Cost       | O&M %         | Total Cost         | O&M %       | Total Cost      | O&M %                    | Total Cost       |
| 1    | O&M Year 1  | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 2    | O&M Year 2  | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 3    | O&M Year 3  | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 4    | O&M Year 4  | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 5    | O&M Year 5  | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 15.0%                    | \$86,542         |
| 6    | O&M Year 6  | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 7    | O&M Year 7  | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 8    | O&M Year 8  | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 9    | O&M Year 9  | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 10   | O&M Year 10 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 92.0%         | \$610,574          | 20.7%       | \$59,482        | 25.0%                    | \$144,236        |
| 11   | O&M Year 11 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 12   | O&M Year 12 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 13   | O&M Year 13 | LS         | % of Const.     | 95.0%        | \$890,372       | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 14   | O&M Year 14 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 15   | O&M Year 15 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 15.0%                    | \$86,542         |
| 16   | O&M Year 16 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 17   | O&M Year 17 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 18   | O&M Year 18 | LS         | % of Const.     | 0.0%         | \$U<br>\$0      | 0.0%         | \$U<br>\$0       | 0.0%          | \$0                | 0.0%        | \$U<br>©0       | 0.0%                     | \$0              |
| 19   | O&M Year 19 | LS         | % of Const.     | 0.0%         | \$U<br>\$0      | 0.0%         | \$U              | 0.0%          | \$U<br>\$610.574   | 0.0%        | \$U<br>\$E0.490 | 0.0%                     | \$U<br>\$144.006 |
| 20   | O&M Year 20 | LS         | % of Const.     | 0.0%         | \$U<br>\$0      | 0.0%         | \$U<br>\$0       | 92.0%         | \$610,574          | 20.7%       | \$59,482        | 25.0%                    | \$144,236        |
| 21   | O&M Year 21 | LS         | % of Const.     | 0.0%         | \$U<br>\$0      | 0.0%         | \$U<br>\$0       | 0.0%          | \$0<br>\$0         | 0.0%        | \$U<br>\$0      | 0.0%                     | \$U<br>\$0       |
| 22   | O&M Year 22 | LS         | % of Const.     | 0.0%         | \$U<br>\$0      | 0.0%         | \$0<br>\$0       | 0.0%          | \$0<br>\$0         | 0.0%        | \$0<br>\$0      | 0.0%                     | \$0<br>\$0       |
| 23   | Own Year 23 | LS         | % of Const.     | 0.0%         | \$0<br>\$0      | 0.0%         | \$U<br>\$0       | 0.0%          | \$0<br>\$0         | 0.0%        | \$0<br>\$0      | 0.0%                     | \$0<br>\$0       |
| 24   | O&M Year 25 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0<br>\$0         | 0.0%        | \$0<br>\$0      | 15.0%                    | \$96.542         |
| 20   | O&M Veer 26 | 1.0        | % of Const.     | 95.0%        | \$890 372       | 0.0%         | \$0<br>\$0       | 0.0%          | \$0<br>\$0         | 0.0%        | \$0<br>\$0      | 0.0%                     | \$00,542         |
| 20   | O&M Voor 27 | 1.9        | % of Const.     | 0.0%         | \$0             | 98.0%        | \$2,025,190      | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0<br>\$0       |
| 28   | O&M Year 28 | 15         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 20   | O&M Year 29 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 30   | Q&M Year 30 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 92.0%         | \$610,574          | 20.7%       | \$59,482        | 25.0%                    | \$144,236        |
| 31   | O&M Year 31 | 1.5        | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 32   | O&M Year 32 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 33   | O&M Year 33 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 34   | O&M Year 34 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 35   | O&M Year 35 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 15.0%                    | \$86,542         |
| 36   | O&M Year 36 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 37   | O&M Year 37 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 38   | O&M Year 38 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 39   | O&M Year 39 | LS         | % of Const.     | 95.0%        | \$890,372       | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 40   | O&M Year 40 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 92.0%         | \$610,574          | 20.7%       | \$59,482        | 25.0%                    | \$144,236        |
| 41   | O&M Year 41 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 42   | O&M Year 42 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 43   | O&M Year 43 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 44   | O&M Year 44 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 45   | O&M Year 45 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 15.0%                    | \$86,542         |
| 46   | O&M Year 46 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 47   | O&M Year 47 | LS         | % of Const.     | 0.0%         | \$0             | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%        | \$0             | 0.0%                     | \$0              |
| 48   | U&M Year 48 | LS         | % of Const.     | 0.0%         | \$U<br>\$0      | 0.0%         | \$U<br>\$0       | 0.0%          | \$U<br>\$0         | 0.0%        | \$U<br>©0       | 0.0%                     | \$0              |
| 49   | U&M Year 49 | LS         | % of Caract     | 0.0%         | \$U             | 0.0%         | \$U              | 0.0%          | φU<br>\$610.574    | 0.0%        | \$U<br>\$E0,400 | 0.0%                     | \$U<br>\$144.000 |
| 50   | Uom rear ou | LS         | 76 OF CONST.    | 0.0%         | ΦU              | 0.0%         | θŪ               | 92.0%         | \$010,574          | 20.7%       | <b>⊅</b> 39,48∠ | 25.0%                    | φ144,230         |
|      | T-4-1       | 0°M C      |                 | ¢0.0         | 74 447          | £0.0         | 25 100           | ¢0.0          | E2 970             | ¢0/         | 7 410           | ¢4.4                     | E2 000           |
|      | lotai       | ORM Com    | tinoney (20%)   | \$2,6        | 1 225           | \$2,0        | 120,190          | \$3,0<br>¢04  | 5 961              | \$25        | 0.224           | \$1,1<br>¢04             | 6 166            |
|      |             | Total Com  | struction Cost  | \$80         | 72 452          | \$60         | 100,100<br>20747 | \$91          | 10,001             | \$8         | 9,∠∠4<br>26.626 | \$34                     | 0,100            |
|      |             | i Jiai Con | au action Cost: | <b>\$3,4</b> | 12,432          | <b>⊋</b> 2,0 | v2,141           | <b>\$3,9</b>  | 00,130             | 95¢         |                 | φ1,5                     | 00,000           |



PROJECT: Rio Grande Canalization Project - Alternative Cost Estimates DETAIL: Problem Location 6 - Cost and Quantities COMPUTED BY: SKV CHECKED BY: IGP

PROBLEM LOCATION 6: PICACHO DRAIN TO BELOW MESILLA DAM

Page 1 of 2

|          | CONSTRUCTION COSTS BY ALTERNATIVE                   |      |             |            |                  |                |                 |                   |                             |             |                 |                            |            |
|----------|-----------------------------------------------------|------|-------------|------------|------------------|----------------|-----------------|-------------------|-----------------------------|-------------|-----------------|----------------------------|------------|
|          |                                                     |      |             | :          | Sediment Remo    | oval Alternati | ves             |                   | Non                         | -Sediment R | emoval Alterna  | tives                      |            |
| Item No. | Item Description                                    | UOM  | Unit Cost   | Channel Ex | cavation (Short) | Channel Ex     | cavation (Long) | New Check/Sl<br>C | uice Structures in<br>anals | Mesilla Dam | Gate Automation | Installation of Vortex Tub |            |
|          |                                                     |      |             | Quant.     | Total Cost       | Quant.         | Total Cost      | Quant.            | Total Cost                  | Quant.      | Total Cost      | Quant.                     | Total Cost |
| 1        | Mobilization / Demobilization                       | LS   | 12.50%      | 1          | \$36,100         | 1              | \$59,169        | 1                 | \$231,300                   | 1           | \$250,000       | 1                          | \$29,625   |
| 2        | Site Access and Staging                             | LS   | 2.50%       | 1          | \$7,220          | 1              | \$11,834        | 1                 | \$46,260                    | 1           | \$50,000        | 1                          | \$5,925    |
| 3        | Clearing and Grubbing                               | ACRE | \$2,000.00  | 1.4        | \$2,700          | 2.5            | \$5,080         | 0.2               | \$400                       | 0.0         | \$0             | 0.5                        | \$1,000    |
| 4        | Excavation (Sediment Removal)                       | CY   | \$2.75      | 35,540     | \$97,735         | 58,170         | \$159,968       | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY   | \$3.80      | 35,540     | \$135,052        | 58,170         | \$221,046       | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY   | \$1.50      | 35,540     | \$53,310         | 58,170         | \$87,255        | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 7        | Excavation (Sediment Traps)                         | CY   | \$4.25      | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF   | \$50.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF   | \$75.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF   | \$85.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF   | \$30.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF   | \$55.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF   | \$70.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY   | \$3.50      | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY   | \$15.25     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 16       | Pilot Channel Excavation                            | CY   | \$6.50      | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 17       | Maintenance Road                                    | SF   | \$2.00      | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 18       | Debris Rack                                         | EA   | \$40,000.00 | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 19       | Structural Excavation                               | CY   | \$10.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 20       | Rock Removal                                        | CY   | \$20.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 21       | Sheet Pile Wall Demolition                          | LF   | \$100.00    | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 22       | Demo Existing Siphon                                | LF   | \$52.50     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 23       | Reinforced Concrete Box                             | CY   | \$800.00    | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 24       | Spur Dike Stone                                     | CY   | \$70.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 25       | Over-excavation (Spur Dikes)                        | CY   | \$10.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 26       | Compacted Backfill (Spur Dikes)                     | CY   | \$5.50      | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 27       | Bank Protection Bedding                             | CY   | \$40.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 28       | Bank Protection Riprap                              | CY   | \$70.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                          | \$0        |
| 29       | Concrete Sill                                       | CY   | \$625.00    | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 300                        | \$187,500  |
| 30       | Vortex Tube                                         | LF   | \$25.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 200                        | \$5,000    |
| 31       | Escape Channels                                     | LF   | \$35.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 800                        | \$28,000   |
| 32       | Control Gate                                        | EA   | \$2,000.00  | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 4                          | \$8,000    |
| 33       | 12-in CMP Culvert                                   | EA   | \$1,500.00  | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 5                          | \$7,500    |
| 34       | Eastside Canal Overflow Check and Bypass            | EA   | \$800,000   | 0          | \$0              | 0              | \$0             | 1                 | \$800,000                   | 0           | \$0             | 0                          | \$0        |
| 35       | Westside Canal Overflow Check and Bypass            | EA   | \$1,050,000 | 0          | \$0              | 0              | \$0             | 1                 | \$1,050,000                 | 0           | \$0             | 0                          | \$0        |
| 36       | Mesilla Dam Gate Automation                         | EA   | \$1,000,000 | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 2           | \$2,000,000     | 0                          | \$0        |
|          |                                                     |      |             |            |                  |                |                 |                   |                             |             |                 |                            |            |
|          | Total Constant                                      |      |             | ¢0/        | 00 4 4 7         | ¢r.            | 44.054          | ¢0.4              | 07.000                      | ¢o.         | 000 000         | ¢0.                        | 70 5 50    |

| Total Construction Cost per Alternative:   | \$332,117 | \$544,351 | \$2,127,960 | \$2,300,000 | \$272,550 |
|--------------------------------------------|-----------|-----------|-------------|-------------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$49,817  | \$81,653  | \$319,194   | \$345,000   | \$40,883  |
| Construction Management (CM - 10%)         | \$33,212  | \$54,435  | \$212,796   | \$230,000   | \$27,255  |
| Sub-total Cost (1):                        | \$415,146 | \$680,438 | \$2,659,950 | \$2,875,000 | \$340,688 |
| Construction Continency (30%):             | \$99,635  | \$163,305 | \$638,388   | \$690,000   | \$81,765  |
| Total Construction Cost:                   | \$514,781 | \$843,744 | \$3,298,338 | \$3,565,000 | \$422,453 |



PROJECT: **Rio Grande Canalization Project - Alternative Cost Estimates** DETAIL: *Problem Location 6 - Cost and Quantities* COMPUTED BY: SKV CHECKED BY: IGP

PROBLEM LOCATION 6: PICACHO DRAIN TO BELOW MESILLA DAM

Page 2 of 2

|      |               |           |                 | O&M C       | OSTS BY ALTE    | RNATIVE        |                  |               |                             |             |                 |                              |                 |
|------|---------------|-----------|-----------------|-------------|-----------------|----------------|------------------|---------------|-----------------------------|-------------|-----------------|------------------------------|-----------------|
|      |               |           |                 | 5           | Sediment Remo   | oval Alternati | ves              |               | Non                         | -Sediment R | emoval Alternat | ives                         |                 |
| Year | O&M Year      | UOM       | Unit Cost       | Channel Exc | avation (Short) | Channel Exc    | cavation (Long)  | New Check/Sit | uice Structures in<br>anals | Mesilla Dam | Gate Automation | Installation of Vortex Tubes |                 |
|      |               |           |                 | O&M %       | Total Cost      | O&M %          | Total Cost       | O&M %         | Total Cost                  | O&M %       | Total Cost      | O&M %                        | Total Cost      |
| 1    | O&M Year 1    | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 2    | O&M Year 2    | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 3    | O&M Year 3    | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 4    | O&M Year 4    | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 5    | O&M Year 5    | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 6    | O&M Year 6    | LS        | % of Const.     | 142.0%      | \$471,606       | 90.0%          | \$489,916        | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 7    | O&M Year 7    | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 8    | O&M Year 8    | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 2.5%          | \$53,199                    | 0.0%        | \$0             | 0.0%                         | \$0             |
| 9    | O&M Year 9    | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 10   | O&M Year 10   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 2.5%        | \$57,500        | 10.0%                        | \$27,255        |
| 11   | O&M Year 11   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 12   | O&M Year 12   | LS        | % of Const.     | 142.0%      | \$471,606       | 90.0%          | \$489,916        | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 13   | O&M Year 13   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 14   | O&M Year 14   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 15   | O&M Year 15   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 16   | O&M Year 16   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 2.5%          | \$53,199                    | 0.0%        | \$0             | 0.0%                         | \$0             |
| 17   | O&M Year 17   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 18   | O&M Year 18   | LS        | % of Const.     | 142.0%      | \$471,606       | 90.0%          | \$489,916        | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 19   | O&M Year 19   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 20   | O&M Year 20   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 2.5%        | \$57,500        | 10.0%                        | \$27,255        |
| 21   | O&M Year 21   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 22   | O&M Year 22   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 23   | O&M Year 23   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 24   | O&M Year 24   | LS        | % of Const.     | 142.0%      | \$471,606       | 90.0%          | \$489,916        | 2.5%          | \$53,199                    | 0.0%        | \$0             | 0.0%                         | \$0             |
| 25   | O&M Year 25   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 26   | O&M Year 26   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 27   | O&M Year 27   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 28   | O&M Year 28   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$U<br>©0       | 0.0%                         | \$0             |
| 29   | O&M Year 29   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$U<br>\$490.016 | 0.0%          | \$U<br>\$0                  | 0.0%        | \$U<br>\$E7.500 | 0.0%                         | \$U<br>\$27.255 |
| 30   | O&M Year 30   | LS        | % of Const.     | 142.0%      | \$471,606       | 90.0%          | \$409,910        | 0.0%          | \$U<br>\$0                  | 2.5%        | \$57,500        | 0.0%                         | \$27,200        |
| 31   | O&M Year 31   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0<br>\$0       | 2.5%          | \$U<br>\$53.100             | 0.0%        | \$0<br>\$0      | 0.0%                         | \$0<br>\$0      |
| 32   | Own Year 32   | LS        | % of Const.     | 142.0%      | \$471,000       | 0.0%           | οφ<br>0.2        | 2.3%          | \$33,133<br>¢0              | 0.0%        | \$0<br>\$0      | 0.0%                         | \$0             |
| 33   | O&M Year 33   | LS        | % of Const      | 142.0%      | \$471,000       | 0.0%           | \$0<br>\$0       | 0.0%          | \$0                         | 0.0%        | \$0<br>\$0      | 0.0%                         | \$0<br>\$0      |
| 34   | Oally Year 34 | 10        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | 00               | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 30   | O&M Voar 26   | 1.9       | % of Const      | 142.0%      | \$471,606       | 90.0%          | \$489.916        | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0<br>\$0      |
| 27   | O&M Voar 27   | 19        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 38   | O&M Year 38   | 15        | % of Const      | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 39   | O&M Year 39   | IS        | % of Const.     | 142.0%      | \$471.606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 40   | O&M Year 40   | 15        | % of Const      | 142.0%      | \$471.606       | 0.0%           | \$0              | 2.5%          | \$53 199                    | 2.5%        | \$57,500        | 10.0%                        | \$27,255        |
| 41   | O&M Year 41   | 15        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 42   | O&M Year 42   | LS        | % of Const.     | 142.0%      | \$471.606       | 90.0%          | \$489.916        | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 43   | O&M Year 43   | 1.5       | % of Const.     | 142.0%      | \$471.606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 44   | Q&M Year 44   | LS        | % of Const.     | 142.0%      | \$471.606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 45   | O&M Year 45   | 1.5       | % of Const.     | 142.0%      | \$471.606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 46   | Q&M Year 46   | LS        | % of Const.     | 142.0%      | \$471.606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 47   | O&M Year 47   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 48   | O&M Year 48   | LS        | % of Const.     | 142.0%      | \$471,606       | 90.0%          | \$489,916        | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 49   | O&M Year 49   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 0.0%          | \$0                         | 0.0%        | \$0             | 0.0%                         | \$0             |
| 50   | O&M Year 50   | LS        | % of Const.     | 142.0%      | \$471,606       | 0.0%           | \$0              | 2.5%          | \$53,199                    | 2.5%        | \$57,500        | 10.0%                        | \$27,255        |
|      |               |           |                 |             |                 |                |                  |               |                             |             |                 |                              | . ,             |
|      | Tota          | I O&M Cos | t per Location: | \$23,5      | 580,275         | \$3,9          | 19,326           | \$31          | 9,194                       | \$28        | 37,500          | \$13                         | 36,275          |
|      |               | O&M Cor   | ntinency (30%): | \$7,0       | 74,083          | \$1,1          | 75,798           | \$9           | 5,758                       | \$8         | 6,250           | \$4                          | 0,883           |
|      |               | Total Con | struction Cost: | \$30,6      | 554,358         | \$5,0          | 95,123           | \$41          | 4,952                       | \$37        | 73,750          | \$17                         | 77,158          |



# PROBLEM LOCATION 7: EAST DRAIN TO BELOW VINTON BRIDGE

Page 1 of 2

|          |                                                     |      |             |             | S               | ediment Rem | noval Alternativ | es           |                    | No          | n-Sediment Rer | noval Altern             | atives     |
|----------|-----------------------------------------------------|------|-------------|-------------|-----------------|-------------|------------------|--------------|--------------------|-------------|----------------|--------------------------|------------|
| Item No. | Item Description                                    | UOM  | Unit Cost   | Channel Exc | avation (Short) | Channel Exc | cavation (Long)  | Channel Exca | vation (Localized) | Sediment Tr | aps in Arroyos | Low-Elevation Spur Dikes |            |
|          |                                                     |      |             | Quant.      | Total Cost      | Quant.      | Total Cost       | Quant.       | Total Cost         | Quant.      | Total Cost     | Quant.                   | Total Cost |
| 1        | Mobilization / Demobilization                       | LS   | 12.50%      | 1           | \$38,865        | 1           | \$49,229         | 1            | \$4,487            | 1           | \$42,078       | 1                        | \$44,518   |
| 2        | Site Access and Staging                             | LS   | 2.50%       | 1           | \$7,773         | 1           | \$9,846          | 1            | \$897              | 1           | \$8,416        | 1                        | \$8,904    |
| 3        | Clearing and Grubbing                               | ACRE | \$2,000.00  | 2.3         | \$4,620         | 3.1         | \$6,140          | 0.5          | \$1,040            | 2.7         | \$5,400        | 1.1                      | \$2,200    |
| 4        | Excavation (Sediment Removal)                       | CY   | \$2.75      | 38,050      | \$104,638       | 48,160      | \$132,440        | 4,330        | \$11,908           | 0           | \$0            | 0                        | \$0        |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY   | \$3.80      | 38,050      | \$144,590       | 48,160      | \$183,008        | 4,330        | \$16,454           | 0           | \$0            | 0                        | \$0        |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY   | \$1.50      | 38,050      | \$57,075        | 48,160      | \$72,240         | 4,330        | \$6,495            | 0           | \$0            | 0                        | \$0        |
| 7        | Excavation (Sediment Traps)                         | CY   | \$4.25      | 0           | \$0             | 0           | \$0              | 0            | \$0                | 14,259      | \$60,601       | 0                        | \$0        |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF   | \$50.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF   | \$75.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 50          | \$3,750        | 0                        | \$0        |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF   | \$85.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 260         | \$22,100       | 0                        | \$0        |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF   | \$30.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 275         | \$8,250        | 0                        | \$0        |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF   | \$55.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 245         | \$13,475       | 0                        | \$0        |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF   | \$70.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 95          | \$6,650        | 0                        | \$0        |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY   | \$3.50      | 0           | \$0             | 0           | \$0              | 0            | \$0                | 1,360       | \$4,760        | 0                        | \$0        |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY   | \$15.25     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 150         | \$2,288        | 0                        | \$0        |
| 16       | Pilot Channel Excavation                            | CY   | \$6.50      | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 17       | Maintenance Road                                    | SF   | \$2.00      | 0           | \$0             | 0           | \$0              | 0            | \$0                | 24,675      | \$49,350       | 0                        | \$0        |
| 18       | Debris Rack                                         | EA   | \$40,000.00 | 0           | \$0             | 0           | \$0              | 0            | \$0                | 4           | \$160,000      | 0                        | \$0        |
| 19       | Structural Excavation                               | CY   | \$10.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 20       | Rock Removal                                        | CY   | \$20.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 21       | Sheet Pile Wall Demolition                          | LF   | \$100.00    | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 22       | Demo Existing Siphon                                | LF   | \$52.50     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 23       | Reinforced Concrete Box                             | CY   | \$800.00    | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 24       | Spur Dike Stone                                     | CY   | \$70.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 4,651                    | \$325,570  |
| 25       | Over-excavation (Spur Dikes)                        | CY   | \$10.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 2,326                    | \$23,260   |
| 26       | Compacted Backfill (Spur Dikes)                     | CY   | \$5.50      | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 930                      | \$5,115    |
| 27       | Bank Protection Bedding                             | CY   | \$40.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 28       | Bank Protection Riprap                              | CY   | \$70.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 29       | Concrete Sill                                       | CY   | \$625.00    | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 30       | Vortex Tube                                         | LF   | \$25.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 31       | Escape Channels                                     | LF   | \$35.00     | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 32       | Control Gate                                        | EA   | \$2,000.00  | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 33       | 12-in CMP Culvert                                   | EA   | \$1,500.00  | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 34       | Eastside Canal Overflow Check and Bypass            | EA   | \$800,000   | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 35       | Westside Canal Overflow Check and Bypass            | EA   | \$1,050,000 | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
| 36       | Mesilla Dam Gate Automation                         | EA   | \$1,000,000 | 0           | \$0             | 0           | \$0              | 0            | \$0                | 0           | \$0            | 0                        | \$0        |
|          |                                                     |      |             |             |                 |             |                  |              |                    |             |                |                          |            |

| Total Construction Cost per Alternative:   | \$357,561 | \$452,902 | \$41,281 | \$387,117 | \$409,567 |
|--------------------------------------------|-----------|-----------|----------|-----------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$53,634  | \$67,935  | \$6,192  | \$58,068  | \$61,435  |
| Construction Management (CM - 10%)         | \$35,756  | \$45,290  | \$4,128  | \$38,712  | \$40,957  |
| Sub-total Cost (1):                        | \$446,951 | \$566,128 | \$51,601 | \$483,896 | \$511,958 |
| Construction Continency (30%):             | \$107,268 | \$135,871 | \$12,384 | \$116,135 | \$122,870 |
| Total Construction Cost:                   | \$554,219 | \$701,998 | \$63,986 | \$600,031 | \$634,828 |



#### PROBLEM LOCATION 7: EAST DRAIN TO BELOW VINTON BRIDGE

PROJECT NO: T33261 DATE: 8/25/2015

| Page 2 of 2 |
|-------------|
|-------------|

| Proof of the state   Proof | O&M COSTS BY ALTERNATIVE |             |           |                 |                               |                  |             |                 |              |                    |                                   |            |                          |            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|-----------|-----------------|-------------------------------|------------------|-------------|-----------------|--------------|--------------------|-----------------------------------|------------|--------------------------|------------|--|
| Prop   Diam   Diam <thdiam< th="">   Diam   Diam   <t< th=""><th></th><th></th><th></th><th></th><th colspan="6">Sediment Removal Alternatives</th><th colspan="5">Non-Sediment Removal Alternatives</th></t<></thdiam<>                                                                                                                                                                                                                                                                                                                                                                            |                          |             |           |                 | Sediment Removal Alternatives |                  |             |                 |              |                    | Non-Sediment Removal Alternatives |            |                          |            |  |
| Image: state   Image: state   Table image: stat | Year                     | O&M Year    | UOM       | Unit Cost       | Channel Exc                   | avation (Short)  | Channel Exc | cavation (Long) | Channel Exca | vation (Localized) | Sediment Traps in Arroyos         |            | Low-Elevation Spur Dikes |            |  |
| 1   0 MAI Yee1   15   N eT core   0 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |             |           |                 | O&M %                         | O&M % Total Cost |             | Total Cost      | O&M %        | Total Cost         | O&M %                             | Total Cost | O&M %                    | Total Cost |  |
| 2   OMM Yee 2   Lis   % of Conce   0.0%   80   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800   0.0%   800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                        | O&M Year 1  | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 3   0.MM Yets <sup>3</sup> 1.0   N   600   0.0%   80   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0%   800   10.0% <t< td=""><td>2</td><td>O&amp;M Year 2</td><td>LS</td><td>% of Const.</td><td>0.0%</td><td>\$0</td><td>0.0%</td><td>\$0</td><td>75.0%</td><td>\$30,961</td><td>0.0%</td><td>\$0</td><td>0.0%</td><td>\$0</td></t<>                                                                                                                                                                                                                                                                                                                                   | 2                        | O&M Year 2  | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 4   0 AM Yers 6   10   8   6 O/M   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.0%   80   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                        | O&M Year 3  | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 15.6%                             | \$60,390   | 0.0%                     | \$0        |  |
| 9   0 AMY vers 6   10   10   8   0 C/M   80   0 C/M   80   0 C/M   80   0 C/M   80   10 /m   80.30   0 C/M   80     7   0 AM Year 7   13   K of Core   0 C/M   80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                        | O&M Year 4  | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 6 OAM Yeer 6 15 % of Coret. 0.0% 60 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 <td>5</td> <td>O&amp;M Year 5</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>15.0%</td> <td>\$61,435</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                        | O&M Year 5  | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 15.0%                    | \$61,435   |  |
| 7 0AM Yee 7 15 % of Cont 20% 523 60% 800 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                        | O&M Year 6  | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 15.6%                             | \$60,390   | 0.0%                     | \$0        |  |
| a OAM Yee 3 LS % of Cone 0.0% 90 9.0% 91.00 80.00 10.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.00 0.0% 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                        | O&M Year 7  | LS        | % of Const.     | 92.0%                         | \$328,956        | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 0 OAM Yee 10 LS % of Local OW 80 O.0% 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                        | O&M Year 8  | LS        | % of Const.     | 0.0%                          | \$0              | 92.0%       | \$416,670       | 75.0%        | \$30,961           | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 10 OAM Yee 10 15 % 0 cont 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80 0.0% 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                        | O&M Year 9  | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 15.6%                             | \$60,390   | 0.0%                     | \$0        |  |
| 11 CMM Year 11 LS % of Const. 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 <td>10</td> <td>O&amp;M Year 10</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>75.0%</td> <td>\$30,961</td> <td>0.0%</td> <td>\$0</td> <td>25.0%</td> <td>\$102,392</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                       | O&M Year 10 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 0.0%                              | \$0        | 25.0%                    | \$102,392  |  |
| 19.   CAM. Year 12   L.S.   N.S. Const.   0.0%   S.J.   0.0%   S.J. <td>11</td> <td>O&amp;M Year 11</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td>                                                                                                                                                                                                                                                                                                                                  | 11                       | O&M Year 11 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 13   Colum Varial   Lis   N of Const   0.00%   S200,000   S200,000 </td <td>12</td> <td>O&amp;M Year 12</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$U<br/>\$0</td> <td>0.0%</td> <td>\$U<br/>\$0</td> <td>75.0%</td> <td>\$30,961</td> <td>15.6%</td> <td>\$60,390</td> <td>0.0%</td> <td>\$0<br/>\$0</td>                                                                                                    | 12                       | O&M Year 12 | LS        | % of Const.     | 0.0%                          | \$U<br>\$0       | 0.0%        | \$U<br>\$0      | 75.0%        | \$30,961           | 15.6%                             | \$60,390   | 0.0%                     | \$0<br>\$0 |  |
| In CMM 168 is CMM 088 is                                                                                                                                                                                                                                                                                                                                             | 13                       | O&M Year 13 | LS        | % of Const.     | 0.0%                          | \$228.056        | 0.0%        | \$0<br>\$0      | 75.0%        | \$0<br>\$20.061    | 0.0%                              | \$0<br>\$0 | 0.0%                     | \$0<br>\$0 |  |
| Dot Mark 10   Cols   North Construction   String    22String                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                       | O&M Year 14 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0<br>\$0      | 0.0%         | \$0,901            | 15.6%                             | \$60,390   | 15.0%                    | \$61.435   |  |
| 10   Death Year 07   LS   % d'Derst   DD%   S0   DD%   S0 <t< td=""><td>15</td><td>O&amp;M Voor 16</td><td>1.5</td><td>% of Const.</td><td>0.0%</td><td>\$0</td><td>92.0%</td><td>\$416.670</td><td>75.0%</td><td>\$30,961</td><td>0.0%</td><td>\$0</td><td>0.0%</td><td>\$0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                       | O&M Voor 16 | 1.5       | % of Const.     | 0.0%                          | \$0              | 92.0%       | \$416.670       | 75.0%        | \$30,961           | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 18   OAM Year 18   15   % of Cornst   0.0%   50   70.%   50   77.0%   50.001   15.6%   50.00   0.0%   50     19   OAM Year 19   LS   % of Cornst   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50   0.0%   50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                       | O&M Year 17 | 1.5       | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 19   Dest Yuer 19   LS   % of Cornt.   0.0%   50   0.0%   50   0.0%   50   20%     20   Dest Yuer 19   LS   % of Cornt.   0.0%   50   0.0%   50   10.0%   50   20%   500   50%   500   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50%   50% <td< td=""><td>18</td><td>Q&amp;M Year 18</td><td>LS</td><td>% of Const.</td><td>0.0%</td><td>\$0</td><td>0.0%</td><td>\$0</td><td>75.0%</td><td>\$30,961</td><td>15.6%</td><td>\$60,390</td><td>0.0%</td><td>\$0</td></td<>                                                                                                                                                                                                                                                                                                                                                                               | 18                       | Q&M Year 18 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 15.6%                             | \$60,390   | 0.0%                     | \$0        |  |
| 2D   DAM Year 20   LS   % of Const.   0.0%   S0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19                       | O&M Year 19 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 21   OAM Year 21   LS   % of Corms   20.0%   \$328.956   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30   0.0%   \$30 <td>20</td> <td>O&amp;M Year 20</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>75.0%</td> <td>\$30,961</td> <td>0.0%</td> <td>\$0</td> <td>25.0%</td> <td>\$102,392</td>                                                                                                                                                                                                                                                                                                      | 20                       | O&M Year 20 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 0.0%                              | \$0        | 25.0%                    | \$102,392  |  |
| 22   OSM Year 22   LS   % of Const.   0.0%   \$0   0.7%   \$0.90%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   \$0.0%   <                                                                                                                                                                                                                                                                                                                                                                                                         | 21                       | O&M Year 21 | LS        | % of Const.     | 92.0%                         | \$328,956        | 0.0%        | \$0             | 0.0%         | \$0                | 15.6%                             | \$60,390   | 0.0%                     | \$0        |  |
| 23   0AM Year 23   LS   % of Conet   0.0%   S0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                       | O&M Year 22 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 24   0M/ Year 24   LS   % of Corest.   0.0%   S0   92.0%   \$416.670   75.0%   \$30.0   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$00   0.0%   \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23                       | O&M Year 23 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 25   O&M Year 25   LS   % of Const.   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24                       | O&M Year 24 | LS        | % of Const.     | 0.0%                          | \$0              | 92.0%       | \$416,670       | 75.0%        | \$30,961           | 15.6%                             | \$60,390   | 0.0%                     | \$0        |  |
| 26   08M Year 26   LS   % of Const.   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25                       | O&M Year 25 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 15.0%                    | \$61,435   |  |
| 27 0&M Year 27 LS % of Const. 0.0% \$0 0.0% \$0 15.6% \$60.390 0.0% \$0   28 0&M Year 29 LS % of Const. 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 </td <td>26</td> <td>O&amp;M Year 26</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>75.0%</td> <td>\$30,961</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26                       | O&M Year 26 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 28   O&M Year 28   L.S   % of Const.   020%   S0   7.0.%   S0.0.0%   S0   0.0%   S0   0.0% <td>27</td> <td>O&amp;M Year 27</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>15.6%</td> <td>\$60,390</td> <td>0.0%</td> <td>\$0</td>                                                                                                                                                                                                                                                                                                                                                                                         | 27                       | O&M Year 27 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 15.6%                             | \$60,390   | 0.0%                     | \$0        |  |
| 29   O&M Year 30   LS   % of Cornst.   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                       | O&M Year 28 | LS        | % of Const.     | 92.0%                         | \$328,956        | 0.0%        | \$0             | 75.0%        | \$30,961           | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 31 O&M Year 31 LS % of Const. 0.0% S0 <td>29</td> <td>O&amp;M Year 29</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29                       | O&M Year 29 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 31 O&M Year 31 LS % of Const. 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 0.0% 50 <td>30</td> <td>O&amp;M Year 30</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$U<br/>\$0</td> <td>0.0%</td> <td>\$U<br/>\$0</td> <td>75.0%</td> <td>\$30,961</td> <td>15.6%</td> <td>\$60,390</td> <td>25.0%</td> <td>\$102,392</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                       | O&M Year 30 | LS        | % of Const.     | 0.0%                          | \$U<br>\$0       | 0.0%        | \$U<br>\$0      | 75.0%        | \$30,961           | 15.6%                             | \$60,390   | 25.0%                    | \$102,392  |  |
| 32 Odd M Year 32 LS % of Const. 0.0% 30 0.20% 94/00/0 7.00% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0 0.0% 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                       | O&M Year 31 | LS        | % of Const.     | 0.0%                          | \$0<br>\$0       | 0.0%        | ΦU<br>\$416.670 | 75.0%        | \$0<br>\$20.061    | 0.0%                              | \$0<br>\$0 | 0.0%                     | \$0<br>\$0 |  |
| 33 Odd W fear 33 LS % of Const. 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0% \$00 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                       | O&M Year 32 | LS        | % of Const.     | 0.0%                          | \$0<br>\$0       | 0.0%        | \$0,070         | 0.0%         | \$30,901           | 15.6%                             | \$60,200   | 0.0%                     | \$0<br>\$0 |  |
| 35   Odd Year 35   LS   % of Const.   92.0%   \$22,966   0.0%   \$00   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0 <td>33</td> <td>O&amp;M Year 33</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>75.0%</td> <td>\$30,961</td> <td>0.0%</td> <td>\$00,390</td> <td>0.0%</td> <td>\$0</td>                                                                                                                                                                                                                                                                                                                                      | 33                       | O&M Year 33 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 0.0%                              | \$00,390   | 0.0%                     | \$0        |  |
| 35   Oak Year 35   LS   % of Const.   O.0%   S0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                       | O&M Voor 25 | 1.5       | % of Const      | 92.0%                         | \$328.956        | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 15.0%                    | \$61,435   |  |
| 37   O&M Year 37   LS   % of Const.   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36                       | O&M Year 36 | 1.5       | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30.961           | 15.6%                             | \$60.390   | 0.0%                     | \$0        |  |
| 38   0&M Year 38   LS   % of Const.   0.0%   \$0   0.0%   \$0   75.0%   \$30,961   0.0%   \$0   0.0%   \$0     39   0&M Year 39   LS   % of Const.   0.0%   \$0   0.0%   \$0   0.0%   \$0   15.6%   \$60.390   0.0%   \$0     40   0&M Year 40   LS   % of Const.   0.0%   \$0   92.0%   \$416,670   75.0%   \$30,961   0.0%   \$0   25.0%   \$102,392     41   0&M Year 41   LS   % of Const.   92.0%   \$328,956   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37                       | O&M Year 37 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 39   O&M Year 39   LS   % of Const.   0.0%   \$0   0.0%   \$0   15.6%   \$00,390   0.0%   \$0     40   O&M Year 40   LS   % of Const.   0.0%   \$0   92.0%   \$416,670   75.0%   \$30,961   0.0%   \$0   25.0%   \$102,392     41   O&M Year 41   LS   % of Const.   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0 <td>38</td> <td>O&amp;M Year 38</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>75.0%</td> <td>\$30,961</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td>                                                                                                                                                                                                                                                                                                                      | 38                       | O&M Year 38 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 40   0&M Year 40   LS   % of Const.   0.0%   \$0   92.0%   \$416,670   75.0%   \$30,961   0.0%   \$0   25.0%   \$102,392     41   0&M Year 41   LS   % of Const.   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39                       | O&M Year 39 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 15.6%                             | \$60,390   | 0.0%                     | \$0        |  |
| 41 0&M Year 41 LS % of Const. 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 <td>40</td> <td>O&amp;M Year 40</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$0</td> <td>92.0%</td> <td>\$416,670</td> <td>75.0%</td> <td>\$30,961</td> <td>0.0%</td> <td>\$0</td> <td>25.0%</td> <td>\$102,392</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                       | O&M Year 40 | LS        | % of Const.     | 0.0%                          | \$0              | 92.0%       | \$416,670       | 75.0%        | \$30,961           | 0.0%                              | \$0        | 25.0%                    | \$102,392  |  |
| 42 0&M Year 42 LS % of Const. 92.0% \$328,956 0.0% \$0 75.0% \$30,961 15.6% \$60,390 0.0% \$0   43 0&M Year 43 LS % of Const. 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41                       | O&M Year 41 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 43 0&M Year 43 LS % of Const. 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 <td>42</td> <td>O&amp;M Year 42</td> <td>LS</td> <td>% of Const.</td> <td>92.0%</td> <td>\$328,956</td> <td>0.0%</td> <td>\$0</td> <td>75.0%</td> <td>\$30,961</td> <td>15.6%</td> <td>\$60,390</td> <td>0.0%</td> <td>\$0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42                       | O&M Year 42 | LS        | % of Const.     | 92.0%                         | \$328,956        | 0.0%        | \$0             | 75.0%        | \$30,961           | 15.6%                             | \$60,390   | 0.0%                     | \$0        |  |
| 44 0&M Year 44 LS % of Const. 0.0% \$0 0.0% \$0 75.0% \$30,961 0.0% \$0 0.0% \$0   45 0&M Year 45 LS % of Const. 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 15.6% \$60,900 15.0% \$61,435   46 0&M Year 46 LS % of Const. 0.0% \$0 0.0% \$0 75.0% \$30,961 15.6% \$60,900 15.0% \$61,435   47 0&M Year 47 LS % of Const. 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43                       | O&M Year 43 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 45 O&M Year 45 LS % of Const. 0.0% \$0 0.0% \$0 15.6% \$60.390 15.0% \$61.435   46 O&M Year 45 LS % of Const. 0.0% \$0 0.0% \$0 7.0% \$30.961 0.0% \$0 0.0% \$0   47 O&M Year 47 LS % of Const. 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% <t< td=""><td>44</td><td>O&amp;M Year 44</td><td>LS</td><td>% of Const.</td><td>0.0%</td><td>\$0</td><td>0.0%</td><td>\$0</td><td>75.0%</td><td>\$30,961</td><td>0.0%</td><td>\$0</td><td>0.0%</td><td>\$0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44                       | O&M Year 44 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 46   0.8M Year 46   LS   % of Const.   0.0%   \$0   0.0%   \$0   75.0%   \$30,961   0.0%   \$0   0.0%   \$0     47   0&M Year 47   LS   % of Const.   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45                       | O&M Year 45 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 15.6%                             | \$60,390   | 15.0%                    | \$61,435   |  |
| 47 O&M Year 47 LS % of Const. 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 <td>46</td> <td>O&amp;M Year 46</td> <td>LS</td> <td>% of Const.</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td> <td>75.0%</td> <td>\$30,961</td> <td>0.0%</td> <td>\$0</td> <td>0.0%</td> <td>\$0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46                       | O&M Year 46 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 48 O&M Year 48 LS % of Const. 0.0% \$0 92.0% \$416,670 75.0% \$30,961 15.6% \$60,390 0.0% \$0   49 O&M Year 49 LS % of Const. 92.0% \$328,956 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0% \$0 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47                       | O&M Year 47 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| 49   O&M Year 49   LS   % of Const.   92.0%   \$328,956   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   0.0%   \$0   25.0%   \$102,392     Total O&M Cost per Location:   \$2,302,692   \$2,500,020   \$774,018   \$966,243   \$819,134     O&M Continency (30%):   \$690,808   \$750,006   \$232,205   \$28,873   \$245,740     Total Construction Cost:   \$2,993,500   \$32,500,06   \$232,205   \$21,066,224   \$12,664,874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48                       | O&M Year 48 | LS        | % of Const.     | 0.0%                          | \$0              | 92.0%       | \$416,670       | 75.0%        | \$30,961           | 15.6%                             | \$60,390   | 0.0%                     | \$0        |  |
| SU   US   % of Const.   U.U%   SU   0.0%   \$0   75.0%   \$30,961   0.0%   \$0   25.0%   \$102,392     Total O&M Cost per Location:     0&M Continency (30%):   \$2,302,692   \$2774,018   \$966,243   \$819,134     0&M Continency (30%):   \$690,808   \$750,006   \$232,205   \$289,873   \$245,740     Total Construction Cost:   \$2,993,500   \$3,250,026   \$1,006,224   \$1,256,116   \$1,064,874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49                       | O&M Year 49 | LS        | % of Const.     | 92.0%                         | \$328,956        | 0.0%        | \$0             | 0.0%         | \$0                | 0.0%                              | \$0        | 0.0%                     | \$0        |  |
| Total O&M Cost per Location:   \$2,302,692   \$2,500,020   \$774,018   \$966,243   \$819,134     O&M Continency (30%):   \$690,808   \$750,006   \$232,205   \$289,873   \$245,740     Total Construction Cost:   \$2,993,500   \$3,250,026   \$1,066,874   \$1,256,116   \$1,064,874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                       | U&M Year 50 | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%        | \$0             | 75.0%        | \$30,961           | 0.0%                              | \$0        | 25.0%                    | \$102,392  |  |
| I otal Oam Cost per Location:   \$2,202,092   \$2,200,020   \$77,010   \$395,243   \$819,134     O&M Continency (30%):   \$690,808   \$750,006   \$22,205   \$289,873   \$245,740     Total Construction Cost:   \$2,993,500   \$3,250,026   \$1,006,224   \$1,266,116   \$1,066,474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | ₹_4-1       | 0°M C     |                 | ¢0.0                          | 02 602           | ¢0.5        | 00.020          | ¢7-          | 4.019              | ¢0/                               | 6 040      | 604                      | 0.124      |  |
| Oran Ontimiency (or vp.)   3000,000   3100,000   3222,200   3239,301     Total Construction Cost:   \$2,993,500   \$3,250,026   \$1,006,224   \$1,256,116   \$1,066,874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | lota        | ORM Cor   | tinoney (20%)   | \$2,3<br>¢cr                  | 02,092           | ¢74         | 00,020          | \$7          | 4,010              | \$966,243                         |            | \$819,134                |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |             | Total Con | struction Cost: | ¢08<br>\$2.9                  | 93.500           | \$3.2       | 50.026          | φ23<br>\$1.0 | 06.224             | φ20<br>\$1.2                      | 56.116     | φ24<br>\$1.0             | 64.874     |  |



# PROBLEM LOCATION 8: ABOVE COUNTRY CLUB BRIDGE TO NEMEXAS SIPHON

Page 1 of 2

|          | Item Description                                    | UOM  |             |             | S                | ediment Rem | noval Alternativ |                                | Non-Sediment Removal Alternatives |                                      |            |                          |            |
|----------|-----------------------------------------------------|------|-------------|-------------|------------------|-------------|------------------|--------------------------------|-----------------------------------|--------------------------------------|------------|--------------------------|------------|
| Item No. |                                                     |      | Unit Cost   | Channel Exe | cavation (Short) | Channel Exe | cavation (Long)  | Channel Excavation (Localized) |                                   | Riprap in Narrow Floodplain<br>Areas |            | Low-Elevation Spur Dikes |            |
|          |                                                     |      |             | Quant.      | Total Cost       | Quant.      | Total Cost       | Quant.                         | Total Cost                        | Quant.                               | Total Cost | Quant.                   | Total Cost |
| 1        | Mobilization / Demobilization                       | LS   | 12.50%      | 1           | \$21,817         | 1           | \$43,784         | 1                              | \$8,985                           | 1                                    | \$29,131   | 1                        | \$21,414   |
| 2        | Site Access and Staging                             | LS   | 2.50%       | 1           | \$4,363          | 1           | \$8,757          | 1                              | \$1,797                           | 1                                    | \$5,826    | 1                        | \$4,283    |
| 3        | Clearing and Grubbing                               | ACRE | \$2,000.00  | 0.7         | \$1,300          | 2.1         | \$4,120          | 0.6                            | \$1,280                           | 0.8                                  | \$1,600    | 0.5                      | \$1,000    |
| 4        | Excavation (Sediment Removal)                       | CY   | \$2.75      | 21,520      | \$59,180         | 43,000      | \$118,250        | 8,770                          | \$24,118                          | 0                                    | \$0        | 0                        | \$0        |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY   | \$3.80      | 21,520      | \$81,776         | 43,000      | \$163,400        | 8,770                          | \$33,326                          | 0                                    | \$0        | 0                        | \$0        |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY   | \$1.50      | 21,520      | \$32,280         | 43,000      | \$64,500         | 8,770                          | \$13,155                          | 0                                    | \$0        | 0                        | \$0        |
| 7        | Excavation (Sediment Traps)                         | CY   | \$4.25      | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF   | \$50.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF   | \$75.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF   | \$85.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF   | \$30.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF   | \$55.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF   | \$70.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY   | \$3.50      | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY   | \$15.25     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 16       | Pilot Channel Excavation                            | CY   | \$6.50      | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 17       | Maintenance Road                                    | SF   | \$2.00      | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 18       | Debris Rack                                         | EA   | \$40,000.00 | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 19       | Structural Excavation                               | CY   | \$10.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 20       | Rock Removal                                        | CY   | \$20.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 21       | Sheet Pile Wall Demolition                          | LF   | \$100.00    | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 22       | Demo Existing Siphon                                | LF   | \$52.50     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 23       | Reinforced Concrete Box                             | CY   | \$800.00    | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 24       | Spur Dike Stone                                     | CY   | \$70.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 2,238                    | \$156,660  |
| 25       | Over-excavation (Stone Placement)                   | CY   | \$10.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 750                                  | \$7,500    | 1,119                    | \$11,190   |
| 26       | Compacted Backfill (Stone Placement)                | CY   | \$5.50      | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 500                                  | \$2,750    | 448                      | \$2,464    |
| 27       | Bank Protection Bedding                             | CY   | \$40.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 700                                  | \$28,000   | 0                        | \$0        |
| 28       | Bank Protection Riprap                              | CY   | \$70.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 2,760                                | \$193,200  | 0                        | \$0        |
| 29       | Concrete Sill                                       | CY   | \$625.00    | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 30       | Vortex Tube                                         | LF   | \$25.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 31       | Escape Channels                                     | LF   | \$35.00     | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 32       | Control Gate                                        | EA   | \$2,000.00  | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 33       | 12-in CMP Culvert                                   | EA   | \$1,500.00  | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 34       | Eastside Canal Overflow Check and Bypass            | EA   | \$800,000   | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 35       | Westside Canal Overflow Check and Bypass            | EA   | \$1,050,000 | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
| 36       | Mesilla Dam Gate Automation                         | EA   | \$1,000,000 | 0           | \$0              | 0           | \$0              | 0                              | \$0                               | 0                                    | \$0        | 0                        | \$0        |
|          |                                                     |      |             |             |                  |             |                  |                                |                                   |                                      |            |                          |            |
|          |                                                     |      | •••         |             |                  | <b>.</b>    |                  |                                |                                   |                                      |            | 0.14                     |            |

| Total Construction Cost per Alternative:   | \$200,716 | \$402,811 | \$82,660  | \$268,008 | \$197,011 |
|--------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$30,107  | \$60,422  | \$12,399  | \$40,201  | \$29,552  |
| Construction Management (CM - 10%)         | \$20,072  | \$40,281  | \$8,266   | \$26,801  | \$19,701  |
| Sub-total Cost (1):                        | \$250,896 | \$503,513 | \$103,325 | \$335,009 | \$246,264 |
| Construction Continency (30%):             | \$60,215  | \$120,843 | \$24,798  | \$80,402  | \$59,103  |
| Total Construction Cost:                   | \$311,110 | \$624,356 | \$128,123 | \$415,412 | \$305,367 |



# PROBLEM LOCATION 8: ABOVE COUNTRY CLUB BRIDGE TO NEMEXAS SIPHON

| O&M COSTS BY ALTERNATIVE |               |           |                 |                               |                  |            |                 |              |                    |                                      |                                   |                          |                |  |  |  |
|--------------------------|---------------|-----------|-----------------|-------------------------------|------------------|------------|-----------------|--------------|--------------------|--------------------------------------|-----------------------------------|--------------------------|----------------|--|--|--|
|                          |               |           |                 | Sediment Removal Alternatives |                  |            |                 |              |                    |                                      | Non-Sediment Removal Alternatives |                          |                |  |  |  |
| Year                     | O&M Year      | UOM       | Unit Cost       | Channel Exc                   | avation (Short)  | Channel Ex | cavation (Long) | Channel Exca | vation (Localized) | Riprap in Narrow Floodplain<br>Areas |                                   | Low-Elevation Spur Dikes |                |  |  |  |
|                          |               |           |                 | O&M %                         | Total Cost       | O&M %      | Total Cost      | O&M %        | Total Cost         | O&M %                                | Total Cost                        | O&M %                    | Total Cost     |  |  |  |
| 1                        | O&M Year 1    | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 2                        | O&M Year 2    | LS        | % of Const.     | 75.0%                         | \$150,537        | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 3                        | O&M Year 3    | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 4                        | O&M Year 4    | LS        | % of Const.     | 75.0%                         | \$150,537        | 85.0%      | \$342,389       | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 5                        | O&M Year 5    | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 15.0%                    | \$29,552       |  |  |  |
| 6                        | O&M Year 6    | LS        | % of Const.     | 75.0%                         | \$150,537        | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 7                        | O&M Year 7    | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 8                        | O&M Year 8    | LS        | % of Const.     | 75.0%                         | \$150,537        | 85.0%      | \$342,389       | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 9                        | O&M Year 9    | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 10                       | O&M Year 10   | LS        | % of Const.     | 75.0%                         | \$150,537        | 0.0%       | \$0             | 60.0%        | \$49,596           | 15.0%                                | \$40,201                          | 25.0%                    | \$49,253       |  |  |  |
| 11                       | O&M Year 11   | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 12                       | O&M Year 12   | LS        | % of Const.     | 75.0%                         | \$150,537        | 85.0%      | \$342,389       | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 13                       | O&M Year 13   | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 14                       | O&M Year 14   | LS        | % of Const.     | 75.0%                         | \$150,537        | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 15                       | O&M Year 15   | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 15.0%                    | \$29,552       |  |  |  |
| 16                       | O&M Year 16   | LS        | % of Const.     | 75.0%                         | \$150,537        | 85.0%      | \$342,389       | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 17                       | O&M Year 17   | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 18                       | O&M Year 18   | LS        | % of Const.     | 75.0%                         | \$150,537        | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 19                       | O&M Year 19   | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 20                       | O&M Year 20   | LS        | % of Const.     | 75.0%                         | \$150,537        | 85.0%      | \$342,389       | 60.0%        | \$49,596           | 15.0%                                | \$40,201                          | 25.0%                    | \$49,253       |  |  |  |
| 21                       | O&M Year 21   | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 22                       | O&M Year 22   | LS        | % of Const.     | 75.0%                         | \$150,537        | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 23                       | O&M Year 23   | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 24                       | O&M Year 24   | LS        | % of Const.     | 75.0%                         | \$150,537        | 85.0%      | \$342,389       | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 25                       | O&M Year 25   | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 15.0%                    | \$29,552       |  |  |  |
| 26                       | O&M Year 26   | LS        | % of Const.     | 75.0%                         | \$150,537        | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 27                       | O&M Year 27   | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 28                       | O&M Year 28   | LS        | % of Const.     | 75.0%                         | \$150,537        | 85.0%      | \$342,389       | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 29                       | O&M Year 29   | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 30                       | O&M Year 30   | LS        | % of Const.     | 75.0%                         | \$150,537        | 0.0%       | \$0             | 60.0%        | \$49,596           | 15.0%                                | \$40,201                          | 25.0%                    | \$49,253       |  |  |  |
| 31                       | O&M Year 31   | LS        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 32                       | O&M Year 32   | LS        | % of Const.     | 75.0%                         | \$150,537        | 85.0%      | \$342,389       | 60.0%        | \$49,596           | 0.0%                                 | \$U<br>©0                         | 0.0%                     | \$0            |  |  |  |
| 33                       | O&M Year 33   | LS        | % of Const.     | 0.0%                          | \$U<br>\$150.537 | 0.0%       | \$U<br>\$0      | 60.0%        | \$49,596           | 0.0%                                 | \$U<br>\$0                        | 0.0%                     | \$0            |  |  |  |
| 34                       | O&M Year 34   | LS        | % of Const.     | 15.0%                         | \$150,557        | 0.0%       | \$0<br>\$0      | 60.0%        | \$49,596           | 0.0%                                 | \$U                               | 15.0%                    | φU<br>\$20.552 |  |  |  |
| 35                       | O&M Year 35   | LS        | % of Const.     | 75.0%                         | ΦU<br>©1E0.E27   | 0.0%       | φU<br>\$242.280 | 60.0%        | \$49,596           | 0.0%                                 | \$0<br>\$0                        | 0.0%                     | \$29,332       |  |  |  |
| 36                       | O&W Year 36   | LS        | % of Const.     | 0.0%                          | \$150,557        | 0.0%       | \$342,369       | 60.0%        | \$49,596           | 0.0%                                 | \$U<br>\$0                        | 0.0%                     | \$0<br>\$0     |  |  |  |
| 37                       | O&M Year 37   | LS        | % of Const.     | 75.0%                         | \$150.527        | 0.0%       | 0¢<br>0         | 60.0%        | \$49,590           | 0.0%                                 | \$0<br>\$0                        | 0.0%                     | \$0            |  |  |  |
| 38                       | Oam Year 38   | LS        | % of Const.     | 0.0%                          | \$150,557        | 0.0%       | \$0<br>\$0      | 60.0%        | \$49,596           | 0.0%                                 | \$0<br>\$0                        | 0.0%                     | \$0<br>\$0     |  |  |  |
| 39                       | O&M Year 40   | LS        | % of Const.     | 75.0%                         | \$150.527        | 95.0%      | φ0<br>\$242.290 | 60.0%        | \$49,590           | 15.0%                                | \$40.201                          | 25.0%                    | \$40.252       |  |  |  |
| 40                       | O&M Vers 44   | 10        | % of Const.     | 0.0%                          | \$130,337        | 0.0%       | \$042,009       | 60.0%        | \$49,590           | 0.0%                                 | \$40,201                          | 20.0%                    | \$43,233       |  |  |  |
| 41                       | O&M Year 42   | LS        | % of Const.     | 75.0%                         | \$150.527        | 0.0%       | 0¢<br>0         | 60.0%        | \$49,590           | 0.0%                                 | \$0<br>\$0                        | 0.0%                     | \$0            |  |  |  |
| 42                       | O&M Voar 42   | 19        | % of Const.     | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 43                       | O&M Yoar 44   | 1.9       | % of Const      | 75.0%                         | \$150 537        | 85.0%      | \$342 389       | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 44                       | O&M Yoar 45   | 19        | % of Const      | 0.0%                          | \$0              | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 15.0%                    | \$29.552       |  |  |  |
| 46                       | O&M Year 46   | IS        | % of Const      | 75.0%                         | \$150.537        | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 40                       | 08M Year 47   | 1.5       | % of Const      | 0.0%                          | \$100,007        | 0.0%       | \$0             | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 47                       | O&M Year 48   | IS        | % of Const      | 75.0%                         | \$150.537        | 85.0%      | \$342,389       | 60.0%        | \$49,596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 40                       | O&M Year 49   | 19        | % of Const      | 0.0%                          | \$0              | 0,0%       | \$0             | 60.0%        | \$49.596           | 0.0%                                 | \$0                               | 0.0%                     | \$0            |  |  |  |
| 50                       | O&M Year 50   | IS        | % of Const      | 75.0%                         | \$150.537        | 0.0%       | \$0             | 60.0%        | \$49,596           | 15.0%                                | \$40.201                          | 25.0%                    | \$49.253       |  |  |  |
| 50                       | Call I Cal Co | 20        |                 | 10.070                        | \$100,001        | 0.070      | Ψ0              | 00.070       | φ.0,000            | 10.070                               | φ.0,201                           | 20.070                   | \$10,200       |  |  |  |
|                          | Total         | O&M Cos   | t per Location  | \$3.7                         | 63.433           | \$4 1      | 08.667          | \$2.4        | 79.808             | \$201.006                            |                                   | \$394.022                |                |  |  |  |
|                          | 1014          | O&M Cou   | ntinency (30%)  | \$0,7<br>\$1.1                | 29.030           | \$1 C      | 232.600         | \$7/3 0/2    |                    | \$60 302                             |                                   | \$394,022                |                |  |  |  |
|                          |               | Total Con | struction Cost: | \$4,8                         | 92,462           | \$5,3      | 341,267         | \$3,223.751  |                    | \$261.307                            |                                   | \$512.229                |                |  |  |  |



PROBLEM LOCATION 9: MONTOYA DRAIN TO AMERICAN DAM

Page 1 of 2

|          | CONSTRUCTION COSTS BY ALTERNATIVE                   |            |                  |            |                  |             |                  |              |                                   |                                                |            |                          |            |  |
|----------|-----------------------------------------------------|------------|------------------|------------|------------------|-------------|------------------|--------------|-----------------------------------|------------------------------------------------|------------|--------------------------|------------|--|
|          |                                                     |            |                  |            | S                | ediment Rem | noval Alternativ |              | Non-Sediment Removal Alternatives |                                                |            |                          |            |  |
| Item No. | Item Description                                    | UOM        | Unit Cost        | Channel Ex | cavation (Short) | Channel Exe | cavation (Long)  | Channel Exca | vation (Localized)                | Island Destabilization /<br>Vegetation Removal |            | Low-Elevation Spur Dikes |            |  |
|          |                                                     |            |                  | Quant.     | Total Cost       | Quant.      | Total Cost       | Quant.       | Total Cost                        | Quant.                                         | Total Cost | Quant.                   | Total Cost |  |
| 1        | Mobilization / Demobilization                       | LS         | 12.50%           | 1          | \$39,413         | 1           | \$179,007        | 1            | \$15,808                          | 1                                              | \$15,395   | 1                        | \$16,328   |  |
| 2        | Site Access and Staging                             | LS         | 2.50%            | 1          | \$7,883          | 1           | \$35,801         | 1            | \$3,162                           | 1                                              | \$3,079    | 1                        | \$3,266    |  |
| 3        | Clearing and Grubbing                               | ACRE       | \$2,000.00       | 4.2        | \$8,360          | 6.6         | \$13,240         | 0.2          | \$480                             | 14.5                                           | \$29,000   | 0.4                      | \$800      |  |
| 4        | Excavation (Sediment Removal)                       | CY         | \$2.75           | 38,130     | \$104,858        | 176,250     | \$484,688        | 15,650       | \$43,038                          | 11,697                                         | \$32,166   | 0                        | \$0        |  |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY         | \$3.80           | 38,130     | \$144,894        | 176,250     | \$669,750        | 15,650       | \$59,470                          | 11,697                                         | \$44,447   | 0                        | \$0        |  |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY         | \$1.50           | 38,130     | \$57,195         | 176,250     | \$264,375        | 15,650       | \$23,475                          | 11,697                                         | \$17,545   | 0                        | \$0        |  |
| 7        | Excavation (Sediment Traps)                         | CY         | \$4.25           | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF         | \$50.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF         | \$75.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF         | \$85.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF         | \$30.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF         | \$55.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF         | \$70.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY         | \$3.50           | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY         | \$15.25          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 16       | Pilot Channel Excavation                            | CY         | \$6.50           | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 17       | Maintenance Road                                    | SF         | \$2.00           | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 18       | Debris Rack                                         | EA         | \$40,000.00      | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 19       | Structural Excavation                               | CY         | \$10.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 20       | Rock Removal                                        | CY         | \$20.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 21       | Sheet Pile Wall Demolition                          | LF         | \$100.00         | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 22       | Demo Existing Siphon                                | LF         | \$52.50          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 23       | Reinforced Concrete Box                             | CY         | \$800.00         | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 24       | Spur Dike Stone                                     | CY         | \$70.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 1,706                    | \$119,420  |  |
| 25       | Over-excavation (Spur Dikes)                        | CY         | \$10.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 853                      | \$8,530    |  |
| 26       | Compacted Backfill (Spur Dikes)                     | CY         | \$5.50           | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 341                      | \$1,876    |  |
| 27       | Bank Protection Bedding                             | CY         | \$40.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 28       | Bank Protection Riprap                              | CY         | \$70.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 29       | Concrete Sill                                       | CY         | \$625.00         | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 30       | Vortex Tube                                         | LF         | \$25.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 31       | Escape Channels                                     | LF         | \$35.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 32       | Control Gate                                        | EA         | \$2,000.00       | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 33       | 12-in CMP Culvert                                   | EA         | \$1,500.00       | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 34       | Eastside Canal Overflow Check and Bypass            | EA         | \$800,000        | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 35       | Westside Canal Overflow Check and Bypass            | EA         | \$1,050,000      | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
| 36       | Mesilla Dam Gate Automation                         | EA         | \$1,000,000      | 0          | \$0              | 0           | \$0              | 0            | \$0                               | 0                                              | \$0        | 0                        | \$0        |  |
|          |                                                     |            |                  |            |                  | -           |                  |              |                                   |                                                |            |                          |            |  |
|          | Total Constru                                       | ation Coat | oor Alternetives | ¢2/        | 22,602           | ¢1 6        | 246.960          | ¢1.          | 1E 400                            | ¢1.                                            | 11 622     | ¢ 11                     | 50.010     |  |

| Total Construction Cost per Alternative:   | \$362,602 | \$1,646,860 | \$145,432 | \$141,632 | \$150,219 |
|--------------------------------------------|-----------|-------------|-----------|-----------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$54,390  | \$247,029   | \$21,815  | \$21,245  | \$22,533  |
| Construction Management (CM - 10%)         | \$36,260  | \$164,686   | \$14,543  | \$14,163  | \$15,022  |
| Sub-total Cost (1):                        | \$453,253 | \$2,058,575 | \$181,790 | \$177,040 | \$187,774 |
| Construction Continency (30%):             | \$108,781 | \$494,058   | \$43,630  | \$42,490  | \$45,066  |
| Total Construction Cost:                   | \$562,034 | \$2,552,634 | \$225,419 | \$219,529 | \$232,840 |



PROBLEM LOCATION 9: MONTOYA DRAIN TO AMERICAN DAM

Page 2 of 2

|      |             |           |                 | O&M COSTS BY ALTERNATIVE |                  |                           |                  |                                |              | New Coding and Demonstrations                  |            |                          |                 |  |
|------|-------------|-----------|-----------------|--------------------------|------------------|---------------------------|------------------|--------------------------------|--------------|------------------------------------------------|------------|--------------------------|-----------------|--|
|      |             |           |                 |                          | 3                | eaiment Ken               | ioval Alternativ | es                             |              | Non-Sediment Removal Alternatives              |            |                          |                 |  |
| Year | O&M Year    | UOM       | Unit Cost       | Channel Exc              | cavation (Short) | Channel Excavation (Long) |                  | Channel Excavation (Localized) |              | Island Destabilization /<br>Vegetation Removal |            | Low-Elevation Spur Dikes |                 |  |
|      |             |           | No at Canast    | O&M %                    | Total Cost       | O&M %                     | Total Cost       | O&M %                          | Total Cost   | 0&M %                                          | Total Cost | O&M %                    | Total Cost      |  |
| 1    | O&M Year 1  | LS        | % of Const.     | 0.0%                     | \$U<br>\$0       | 0.0%                      | \$U<br>©0        | 143.0%                         | \$207,968    | 0.0%                                           | \$U<br>©0  | 0.0%                     | \$0             |  |
| 2    | O&M Year 2  | LS        | % of Const.     | 0.0%                     | \$U<br>\$296.456 | 0.0%                      | \$U<br>\$0       | 143.0%                         | \$207,968    | 0.0%                                           | \$U<br>\$0 | 0.0%                     | \$0             |  |
| 3    | U&M Year 3  | LS        | % of Const.     | 79.0%                    | \$200,400        | 0.0%                      | \$U<br>\$0       | 143.0%                         | \$207,966    | 0.0%                                           | 50<br>00   | 0.0%                     | \$0<br>\$0      |  |
| 4    | U&M Year 4  | LS        | % of Const.     | 0.0%                     | \$U              | 0.0%                      | \$U<br>\$0       | 143.0%                         | \$207,968    | 25.0%                                          | \$35,408   | 0.0%                     | \$U<br>\$22,522 |  |
| 5    | Oam Year 5  | LS        | % of Const.     | 70.0%                    | \$296.456        | 0.0%                      | 0¢<br>02         | 143.0%                         | \$207,500    | 0.0%                                           | \$0        | 0.0%                     | \$22,555<br>\$0 |  |
| 5    | O&M Year 7  | LS        | % of Const      | 0.0%                     | \$0              | 0.0%                      | \$0<br>\$0       | 143.0%                         | \$207,908    | 0.0%                                           | \$0        | 0.0%                     | \$0<br>\$0      |  |
| 7    | O&M Yoar 8  | 1.5       | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 25.0%                                          | \$35.408   | 0.0%                     | \$0             |  |
| 9    | O&M Year 9  | 15        | % of Const.     | 79.0%                    | \$286.456        | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 10   | O&M Year 10 | 15        | % of Const.     | 0.0%                     | \$0              | 96.0%                     | \$1.580.986      | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 25.0%                    | \$37,555        |  |
| 10   | O&M Year 11 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 12   | O&M Year 12 | LS        | % of Const.     | 79.0%                    | \$286,456        | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 25.0%                                          | \$35,408   | 0.0%                     | \$0             |  |
| 13   | O&M Year 13 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 14   | O&M Year 14 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 15   | O&M Year 15 | LS        | % of Const.     | 79.0%                    | \$286,456        | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 15.0%                    | \$22,533        |  |
| 16   | O&M Year 16 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 25.0%                                          | \$35,408   | 0.0%                     | \$0             |  |
| 17   | O&M Year 17 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 18   | O&M Year 18 | LS        | % of Const.     | 79.0%                    | \$286,456        | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 19   | O&M Year 19 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 20   | O&M Year 20 | LS        | % of Const.     | 0.0%                     | \$0              | 96.0%                     | \$1,580,986      | 143.0%                         | \$207,968    | 25.0%                                          | \$35,408   | 25.0%                    | \$37,555        |  |
| 21   | O&M Year 21 | LS        | % of Const.     | 79.0%                    | \$286,456        | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 22   | O&M Year 22 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 23   | O&M Year 23 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 24   | O&M Year 24 | LS        | % of Const.     | 79.0%                    | \$286,456        | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 25.0%                                          | \$35,408   | 0.0%                     | \$0             |  |
| 25   | O&M Year 25 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 15.0%                    | \$22,533        |  |
| 26   | O&M Year 26 | LS        | % of Const.     | 0.0%                     | \$U<br>\$296.456 | 0.0%                      | \$U<br>\$0       | 143.0%                         | \$207,968    | 0.0%                                           | \$U<br>\$0 | 0.0%                     | \$0             |  |
| 27   | O&M Year 28 | LS        | % of Const      | 0.0%                     | \$200,450        | 0.0%                      | \$0<br>\$0       | 143.0%                         | \$207,968    | 25.0%                                          | \$35.408   | 0.0%                     | \$0<br>\$0      |  |
| 20   | O&M Yoar 20 | 1.9       | % of Const      | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 30   | O&M Year 30 | 15        | % of Const.     | 79.0%                    | \$286.456        | 96.0%                     | \$1.580.986      | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 25.0%                    | \$37,555        |  |
| 31   | O&M Year 31 | 1.5       | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 32   | O&M Year 32 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 25.0%                                          | \$35,408   | 0.0%                     | \$0             |  |
| 33   | O&M Year 33 | LS        | % of Const.     | 79.0%                    | \$286,456        | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 34   | O&M Year 34 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 35   | O&M Year 35 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 15.0%                    | \$22,533        |  |
| 36   | O&M Year 36 | LS        | % of Const.     | 79.0%                    | \$286,456        | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 25.0%                                          | \$35,408   | 0.0%                     | \$0             |  |
| 37   | O&M Year 37 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 38   | O&M Year 38 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 39   | O&M Year 39 | LS        | % of Const.     | 79.0%                    | \$286,456        | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 40   | O&M Year 40 | LS        | % of Const.     | 0.0%                     | \$0              | 96.0%                     | \$1,580,986      | 143.0%                         | \$207,968    | 25.0%                                          | \$35,408   | 25.0%                    | \$37,555        |  |
| 41   | O&M Year 41 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 42   | O&M Year 42 | LS        | % of Const.     | 79.0%                    | \$286,456        | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 43   | O&M Year 43 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 44   | O&M Year 44 | LS        | % of Const.     | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 25.0%                                          | \$35,408   | 0.0%                     | \$0             |  |
| 45   | O&M Year 45 | LS        | % of Const.     | 79.0%                    | \$286,456        | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 15.0%                    | \$22,533        |  |
| 46   |             | LS        | % of Const.     | 0.0%                     | \$U<br>\$0       | 0.0%                      | \$U<br>\$0       | 143.0%                         | \$207,968    | 0.0%                                           | 3U<br>\$0  | 0.0%                     | \$0<br>\$0      |  |
| 47   | ORM Voor 49 | 19        | % of Const.     | 79.0%                    | \$286.456        | 0.0%                      | \$0<br>\$0       | 143.0%                         | \$207,508    | 25.0%                                          | \$35.408   | 0.0%                     | \$0             |  |
| 40   | O&M Vear 49 | 19        | % of Const      | 0.0%                     | \$0              | 0.0%                      | \$0              | 143.0%                         | \$207,968    | 0.0%                                           | \$0        | 0.0%                     | \$0             |  |
| 50   | O&M Year 50 | LS        | % of Const      | 0.0%                     | \$0              | 96,0%                     | \$1,580.986      | 143.0%                         | \$207.968    | 0.0%                                           | \$0        | 25.0%                    | \$37.555        |  |
|      |             |           |                 |                          | ÷ •              |                           |                  |                                |              |                                                |            |                          | ÷••,•••         |  |
|      | Tota        | I O&M Cos | t per Location: | \$4,5                    | 83,295           | \$7,9                     | 04,930           | \$10,                          | \$10.398.379 |                                                | \$424,896  |                          | \$300,439       |  |
|      |             | O&M Co    | ntinency (30%): | \$1,3                    | 374,989          | \$2,3                     | 371,479          | \$3,119,514                    |              | \$127,469                                      |            | \$90,132                 |                 |  |
|      |             | Total Con | struction Cost: | \$5,9                    | 58,284           | \$10,                     | 276,409          | \$13,                          | 517,893      | \$552,364                                      |            | \$390,570                |                 |  |
#### RIO GRANDE CANALIZATION PROJECT UNIT COST ASSUMPTIONS

|        |                                                     |      |            | Date: 3-Aug-15                                                                    |
|--------|-----------------------------------------------------|------|------------|-----------------------------------------------------------------------------------|
| ITEM # | ITEM DESCRIPTION                                    | UOM  | UNIT COST  | NOTES                                                                             |
| 1      | Mobilization / Demobilization                       | %    | 12 5%      | Assumes 12.5% of construction costs for moh/demoh                                 |
| 2      | Site Access and Staging                             | %    | 2.5%       | Assumes 2.5% of construction costs for site access                                |
| 3      | Clearing and Grubbing                               | ACRE | \$ 20      | 00 Assumes clearing of medium brush including trees                               |
| 4      | Excavation (Sediment Removal)                       | CY   | \$ 2       | 75 Assumes dozers to excavate and place in stocknile                              |
| 5      | Load/Haul to Local Disposal Site (Sediment Removal) | CY   | \$ 3       | 80 Assumes hauling 2-mi (roundtrin) on aver to disposal site                      |
| 6      | Compacted Fill at Disposal Site (Sediment Removal)  | CY   | \$ 1.      | 50 Assumes excavating from stockpile and compacting at disposal site.             |
| 7      | Excavation (Sediment Traps)                         | CY   | \$ 4       | 25 Assumes hydraulic exc (33% of quant.) and dozers for remaining                 |
| 8      | 1-ft Rebar Mesh                                     | LF   | \$ 50.     | 00 Assumes 1' x 1' rebar (#4) mesh. 3' high, welded, with steel posts every 12-If |
| 9      | 8-in Rebar Mesh                                     | LF   | \$ 75      | 00 Assumes 8" x 8" rebar (#4) mesh, 3' high, welded, with steel posts every 12-If |
| 10     | 6-in Rebar Mesh                                     | LF   | \$ 85      | 00 Assumes 6" x 6" rebar (#4) mesh, 3' high, welded, with steel posts every 12-If |
| 11     | 4-in Wire Mesh                                      | LF   | \$ 30      | 00 Assumes 4" x 4" wire mesh (1/8") dia., 3' high, with steel posts every 12-lf   |
| 12     | 2-in Wire Mesh                                      | LF   | \$ 55.     | 00 Assumes 2" x 2" wire mesh (1/8") dia., 3' high, with steel posts every 12-lf   |
| 13     | 1-in Wire Mesh                                      | LF   | \$ 70.     | 00 Assumes 1" x 1" wire mesh (1/8") dia., 3' high, with steel posts every 12-lf   |
| 14     | Compacted Fill (Sediment Trap Berm)                 | CY   | \$ 3.      | 50 Assumes using excavated material for berm, 3' high, 2:1 side slopes, no borrow |
| 15     | Rock Slope Protection (Sediment Trap Berm)          | CY   | \$ 15      | 25 Assumes using rock from excavated materials, placed along 1 slope of berm      |
| 16     | Pilot Channel Excavation                            | CY   | \$ 6       | 50 Assumes hydraulic excavators, material disposed on-site                        |
| 17     | Maintenance Road                                    | SF   | \$ 2       | 00 Assumes 15' wide road, graded, compacted, with stabilizing material            |
| 18     | Debris Rack                                         | EA   | \$ 40,0    | 00 Assumes steel debris racks, field constructed, at every sediment trap          |
| 19     | Structural Excavation                               | CY   | \$ 10      | 00 Assumes hydraulic excavators, material disposed on-site                        |
| 20     | Rock Removal                                        | CY   | \$ 20      | 00 Assumes removal of loose rock and disposal on-site                             |
| 21     | Sheet Pile Wall Demolition                          | LF   | \$ 1       | 00 Assumes wall is 25-vlf deep, sheet piles would be removed and salvaged         |
| 22     | Demo Existing Concrete Siphon                       | LF   | \$ 52      | 50 Assumes demo reinforced concrete box, haul materials off-site for disposal     |
| 23     | Reinforced Concrete Box                             | CY   | \$ 8       | 00 Assumes reinforced concrete box, with grading and base layer                   |
| 24     | Spur Dike Stone                                     | CY   | \$ 70      | 00 Includes material, delivery to project site, and placement                     |
| 25     | Over-excavation (Spur Dikes)                        | CY   | \$ 10      | 00 Assumes excavated material to be stockpiled on-site for re-use                 |
| 26     | Compacted Backfill (Spur Dikes)                     | CY   | \$ 5.      | 50 Assumes re-use of previous excavated materials for backfill material           |
| 27     | Bank Protection Bedding                             | CY   | \$ 40      | 00 Includes stone material, delivery and placement                                |
| 28     | Bank Protection Riprap                              | CY   | \$ 70      | 00 Includes stone material, delivery and placement                                |
| 29     | Concrete Sill                                       | CY   | \$ 6       | 25 Assumes 1' thick concrete sill for vortex tube                                 |
| 30     | Vortex Tubes                                        | LF   | \$ 25      | 00 Assumes 8" diameter tubes placed in concrete sill                              |
| 31     | Escape Channels                                     | LF   | \$ 35      | 00 Includes excavation, concrete channel, and backfill                            |
| 32     | Control Gate                                        | EA   | \$ 2,0     | 00 Includes material and installation of 12" canal gate                           |
| 33     | 12-in CMP Culvert                                   | EA   | \$ 1,5     | 00 Assumes 12" CMP culvert with gravel bedding, earthwork elsehwere, 30-lf        |
| 34     | Eastside Canal Overflow Check and Bypass            | LS   | \$ 800,0   | 00 Includes all earthwork, concrete, gates, etc. for bypass construction          |
| 35     | Westside Canal Overflow Check and Bypass            | LS   | \$ 1,050,0 | 00 Includes all earthwork, concrete, gates, etc. for bypass construction          |
| 36     | Mesilla Dam Gate Automation                         | EA   | \$ 1,000,0 | 00 Cost is a placeholder; awaiting detailed information and will be updated       |

#### **RIO GRANDE CANALIZATION PROJECT**

|          | DETAILE                                                |            | ATIONS             |           |                                         | Pa       | age: 1 01 5           |
|----------|--------------------------------------------------------|------------|--------------------|-----------|-----------------------------------------|----------|-----------------------|
| ITEM NO. | COST ITEM DESCRIPTION / SUB-COST ITEMS                 | UOM        | QUANTITY           |           | UNIT COST                               |          | TOTAL COST            |
| 1        | Fastsida Canal - New Check/Sluice Structures in Canals | 15         | 1                  | ¢         | 776 011 88                              | ¢        | 776 012               |
| -        | Lastside Canal - New Creck/Sidice Structures in Canals | 25         | -                  | Ŷ         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Ŷ        | 770,012               |
|          | .01 Earthwork                                          | LS         | 1                  | \$        | 14,636.88                               | \$       | 14,637                |
|          | a) Structural Excavation                               | CY         | 550                | \$        | 15.00                                   | \$       | 8,250                 |
|          | b) Push to Stockpile                                   | CY         | 633                | \$        | 2.50                                    | \$       | 1,581                 |
|          | c) Haul to Disposal                                    | CY         | 633                | \$        | 5.75                                    | \$       | 3,637                 |
|          | d) Compacted Backfill                                  | CY         | 138                | \$        | 8.50                                    | \$       | 1,169                 |
|          | .02 Concrete                                           | CY         | 330                | \$        | 701.14                                  | \$       | 231,375               |
|          | a) Base Layer                                          | CY         | 100                | \$        | 40.00                                   | \$       | 4,000                 |
|          | b) Structure Invert                                    | CY         | 125                | \$        | 625.00                                  | \$       | 78,125                |
|          | c) Sideslopes                                          | CY         | 140                | \$        | 675.00                                  | \$       | 94,500                |
|          | d) Gate Walls                                          | CY         | 60                 | \$        | 850.00                                  | \$       | 51,000                |
|          | e) Walkway                                             | CY         | 5                  | \$        | 750.00                                  | \$       | 3,750                 |
|          | .03 Gates                                              | LS         | 1                  | \$        | 530,000.00                              | \$       | 530,000               |
|          | a) Sluiceway Gate                                      | FΔ         | А                  | ¢         | 120 000 00                              | ¢        | 480.000               |
|          | b) Wasteway Gate                                       | EA         | 2                  | \$        | 25,000.00                               | \$<br>\$ | 50,000                |
|          |                                                        |            |                    |           |                                         | Ro       | unded Unit Cost Used: |
|          |                                                        | Eastside C | anal - New Check/S | Sluice St | ructures in Canals                      |          | \$ 800,000.00/EA      |
|          |                                                        |            |                    |           |                                         |          |                       |
| 2        | Westside Canal - New Check/Sluice Structures in Canals | LS         | 1                  | \$        | 1,049,862.50                            | \$       | 1,049,863             |
|          | .01 Earthwork                                          | LS         | 1                  | \$        | 26,612.50                               | \$       | 26,613                |
|          | a) Structural Excavation                               | CY         | 1,000              | \$        | 15.00                                   | \$       | 15,000                |
|          | b) Push to Stockpile                                   | CY         | 1,150              | \$        | 2.50                                    | \$       | 2,875                 |
|          | c) Haul to Disposal                                    | CY         | 1,150              | \$        | 5.75                                    | \$       | 6,613                 |
|          | d) Compacted Backfill                                  | CY         | 250                | \$        | 8.50                                    | \$       | 2,125                 |
|          | .02 Concrete                                           | CY         | 510                | \$        | 692.65                                  | \$       | 353,250               |
|          | a) Base Layer                                          | СҮ         | 200                | \$        | 40.00                                   | \$       | 8.000                 |
|          | b) Structure Invert                                    | CY         | 250                | \$        | 625.00                                  | \$       | 156,250               |
|          | c) Sideslopes                                          | CY         | 180                | \$        | 675.00                                  | \$       | 121,500               |
|          | d) Gate Walls                                          | CY         | 75                 | \$        | 850.00                                  | \$       | 63,750                |
|          | e) Walkway                                             | CY         | 5                  | \$        | 750.00                                  | \$       | 3,750                 |
|          | .03 Gates                                              | LS         | 1                  | \$        | 670,000.00                              | \$       | 670,000               |
|          | a) Sluiceway Gate                                      | EA         | 4                  | \$        | 155,000.00                              | \$       | 620.000               |
|          | b) Wasteway Gate                                       | EA         | 2                  | \$        | 25,000.00                               | \$       | 50,000                |
|          |                                                        |            |                    |           |                                         | Ro       | unded Unit Cost Used: |
|          |                                                        | Westside C | anal - New Check/S | Sluice St | ructures in Canals                      |          | \$ 1,050,000.00/EA    |
|          |                                                        |            |                    |           |                                         |          |                       |



#### TOTAL ANNUAL COSTS BY PROBLEM LOCATION AND ALTERNATIVE

#### Page 1 of 3

| PROBL    | EM LOCATION 1: TIERRA BLANCA CREEK TO SIBL | EY ARRO | YO       |                            |                            |                                |                           |                                       |
|----------|--------------------------------------------|---------|----------|----------------------------|----------------------------|--------------------------------|---------------------------|---------------------------------------|
|          |                                            |         |          | S                          | ediment Removal Alternativ | es                             | Non-Sediment Re           | moval Alternatives                    |
| Item No. | Item Description                           | UOM     | Quantity | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized) | Sediment Traps in Arroyos | Modification of the TB Vortex<br>Weir |
|          |                                            |         |          | Total Costs                | Total Costs                | Total Costs                    | Total Costs               | Total Costs                           |
| 1        | Total Construction Costs                   | LS      | 1        | \$196,130                  | \$462,974                  | \$58,728                       | \$706,400                 | \$20,059                              |
| 2        | Planning, Engineering & Design (PED)       | LS      | 1        | \$29,419                   | \$69,446                   | \$8,809                        | \$105,960                 | \$3,009                               |
| 3        | Construction Management (CM)               | LS      | 1        | \$19,613                   | \$46,297                   | \$5,873                        | \$70,640                  | \$2,006                               |
| 4        | Construction Subtotal                      | LS      | 1        | \$245,162                  | \$578,717                  | \$73,410                       | \$883,000                 | \$25,074                              |
| 5        | Construction Contingency                   | LS      | 1        | \$58,839                   | \$138,892                  | \$17,618                       | \$211,920                 | \$6,018                               |
| 6        | Total First Costs                          | LS      | 1        | \$304,001                  | \$717,610                  | \$91,028                       | \$1,094,920               | \$31,092                              |
|          |                                            |         |          |                            |                            |                                |                           |                                       |
| 7        | Annualized First Costs                     | LS      | 1        | \$12,700                   | \$30,000                   | \$3,800                        | \$45,700                  | \$1,300                               |
|          |                                            |         |          |                            |                            |                                |                           |                                       |
| 8        | Life Cycle O&M Costs                       | LS      | 1        | \$2,667,363                | \$4,120,468                | \$1,835,238                    | \$4,415,001               | \$50,149                              |
| 9        | O&M Contingency                            | LS      | 1        | \$800,209                  | \$1,236,140                | \$550,571                      | \$1,324,500               | \$15,045                              |
| 10       | O&M Total Costs                            | LS      | 1        | \$3,467,572                | \$5,356,608                | \$2,385,810                    | \$5,739,501               | \$65,193                              |
|          |                                            |         |          |                            |                            |                                |                           |                                       |
| 11       | Annualized O&M Costs                       | LS      | 1        | \$144,600                  | \$223,300                  | \$99,500                       | \$239,300                 | \$2,800                               |
|          |                                            |         |          |                            |                            |                                |                           |                                       |
| 12       | Total Annualized Project Costs             | LS      | 1        | \$157,300                  | \$253,300                  | \$103,300                      | \$285,000                 | \$4,100                               |
|          |                                            |         |          |                            |                            |                                |                           |                                       |

| PROBL    | LEM LOCATION 2: SALEM BRIDGE TO PLACITAS AF | ROTO |          |                            |                            |                                |                           |                                                |
|----------|---------------------------------------------|------|----------|----------------------------|----------------------------|--------------------------------|---------------------------|------------------------------------------------|
|          |                                             |      |          | S                          | ediment Removal Alternativ | res                            | Non-Sediment Rer          | noval Alternatives                             |
| Item No. | Item Description                            | иом  | Quantity | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized) | Sediment Traps in Arroyos | Island Destabilization /<br>Vegetation Removal |
|          |                                             |      |          | Total Costs                | Total Costs                | Total Costs                    | Total Costs               | Total Costs                                    |
| 1        | Total Construction Costs                    | LS   | 1        | \$793,004                  | \$1,188,484                | \$430,616                      | \$465,231                 | \$338,940                                      |
| 2        | Planning, Engineering & Design (PED)        | LS   | 1        | \$118,951                  | \$178,273                  | \$64,592                       | \$69,785                  | \$50,841                                       |
| 3        | Construction Management (CM)                | LS   | 1        | \$79,300                   | \$118,848                  | \$43,062                       | \$46,523                  | \$33,894                                       |
| 4        | Construction Subtotal                       | LS   | 1        | \$991,255                  | \$1,485,605                | \$538,270                      | \$581,538                 | \$423,675                                      |
| 5        | Construction Contingency                    | LS   | 1        | \$237,901                  | \$356,545                  | \$129,185                      | \$139,569                 | \$101,682                                      |
| 6        | Total First Costs                           | LS   | 1        | \$1,229,157                | \$1,842,150                | \$667,455                      | \$721,108                 | \$525,357                                      |
|          |                                             |      |          |                            |                            |                                |                           |                                                |
| 7        | Annualized First Costs                      | LS   | 1        | \$51,300                   | \$76,800                   | \$27,900                       | \$30,100                  | \$21,900                                       |
|          |                                             |      |          |                            |                            |                                |                           |                                                |
| 8        | Life Cycle O&M Costs                        | LS   | 1        | \$3,925,372                | \$5,764,148                | \$2,833,456                    | \$1,116,554               | \$1,016,819                                    |
| 9        | O&M Contingency                             | LS   | 1        | \$1,177,611                | \$1,729,244                | \$850,037                      | \$334,966                 | \$305,046                                      |
| 10       | O&M Total Costs                             | LS   | 1        | \$5,102,983                | \$7,493,393                | \$3,683,492                    | \$1,451,520               | \$1,321,865                                    |
|          |                                             |      |          |                            |                            |                                |                           |                                                |
| 11       | Annualized O&M Costs                        | LS   | 1        | \$212,700                  | \$312,400                  | \$153,600                      | \$60,500                  | \$55,100                                       |
|          |                                             |      |          |                            |                            |                                |                           |                                                |
| 12       | Total Annualized Project Costs              | LS   | 1        | \$264,000                  | \$389,200                  | \$181,500                      | \$90,600                  | \$77,000                                       |
|          |                                             |      |          |                            |                            |                                |                           |                                                |

#### PROBLEM LOCATION 3: RINCON SIPHON A RESTORATION SITE TO RINCON SIPHON

|          |                                      |     |          | 5                          | ediment Removal Alternativ | es                             | Non-Sediment Rer          | noval Alternatives                  |
|----------|--------------------------------------|-----|----------|----------------------------|----------------------------|--------------------------------|---------------------------|-------------------------------------|
| Item No. | Item Description                     | UOM | Quantity | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized) | Sediment Traps in Arroyos | Replace Rincon Siphon with<br>Flume |
|          |                                      |     |          | Total Costs                | Total Costs                | Total Costs                    | Total Costs               | Total Costs                         |
| 1        | Total Construction Costs             | LS  | 1        | \$162,128                  | \$342,192                  | \$105,692                      | \$99,764                  | \$1,283,501                         |
| 2        | Planning, Engineering & Design (PED) | LS  | 1        | \$24,319                   | \$51,329                   | \$15,854                       | \$14,965                  | \$192,525                           |
| 3        | Construction Management (CM)         | LS  | 1        | \$16,213                   | \$34,219                   | \$10,569                       | \$9,976                   | \$128,350                           |
| 4        | Construction Subtotal                | LS  | 1        | \$202,660                  | \$427,740                  | \$132,116                      | \$124,705                 | \$1,604,376                         |
| 5        | Construction Contingency             | LS  | 1        | \$48,638                   | \$102,658                  | \$31,708                       | \$29,929                  | \$385,050                           |
| 6        | Total First Costs                    | LS  | 1        | \$251,299                  | \$530,398                  | \$163,823                      | \$154,634                 | \$1,989,426                         |
|          |                                      |     |          |                            |                            |                                |                           |                                     |
| 7        | Annualized First Costs               | LS  | 1        | \$10,500                   | \$22,200                   | \$6,900                        | \$6,500                   | \$83,000                            |
|          |                                      |     |          |                            |                            |                                |                           |                                     |
| 8        | Life Cycle O&M Costs                 | LS  | 1        | \$885,220                  | \$1,591,194                | \$695,456                      | \$140,069                 | \$320,875                           |
| 9        | O&M Contingency                      | LS  | 1        | \$265,566                  | \$477,358                  | \$208,637                      | \$42,021                  | \$96,263                            |
| 10       | O&M Total Costs                      | LS  | 1        | \$1,150,786                | \$2,068,552                | \$904,093                      | \$182,089                 | \$417,138                           |
|          |                                      |     |          |                            |                            |                                |                           |                                     |
| 11       | Annualized O&M Costs                 | LS  | 1        | \$48,000                   | \$86,300                   | \$37,700                       | \$7,600                   | \$17,400                            |
|          |                                      |     |          |                            |                            |                                |                           |                                     |
| 12       | Total Annualized Project Costs       | LS  | 1        | \$58,500                   | \$108,500                  | \$44,600                       | \$14,100                  | \$100,400                           |
|          |                                      |     |          |                            |                            |                                |                           |                                     |



#### TOTAL ANNUAL COSTS BY PROBLEM LOCATION AND ALTERNATIVE

#### Page 2 of 3

| PROBL    | EM LOCATION 4: RINCON ARROYO TO BIGNELL A | RROYO |          |                            |                            |                                |                                        |                          |
|----------|-------------------------------------------|-------|----------|----------------------------|----------------------------|--------------------------------|----------------------------------------|--------------------------|
|          |                                           |       |          | Se                         | ediment Removal Alternativ | es                             | Non-Sediment Rer                       | noval Alternatives       |
| Item No. | Item Description                          | UOM   | Quantity | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized) | Island Destabilization / Spur<br>Dikes | Low-Elevation Spur Dikes |
|          |                                           |       |          | Total Costs                | Total Costs                | Total Costs                    | Total Costs                            | Total Costs              |
| 1        | Total Construction Costs                  | LS    | 1        | \$607,826                  | \$2,064,157                | \$354,064                      | \$428,803                              | \$373,807                |
| 2        | Planning, Engineering & Design (PED)      | LS    | 1        | \$91,174                   | \$309,624                  | \$53,110                       | \$64,320                               | \$56,071                 |
| 3        | Construction Management (CM)              | LS    | 1        | \$60,783                   | \$206,416                  | \$35,406                       | \$42,880                               | \$37,381                 |
| 4        | Construction Subtotal                     | LS    | 1        | \$759,783                  | \$2,580,197                | \$442,580                      | \$536,003                              | \$467,259                |
| 5        | Construction Contingency                  | LS    | 1        | \$182,348                  | \$619,247                  | \$106,219                      | \$128,641                              | \$112,142                |
| 6        | Total First Costs                         | LS    | 1        | \$942,131                  | \$3,199,444                | \$548,800                      | \$664,644                              | \$579,401                |
|          |                                           |       |          |                            |                            |                                |                                        |                          |
| 7        | Annualized First Costs                    | LS    | 1        | \$39,300                   | \$133,400                  | \$22,900                       | \$27,800                               | \$24,200                 |
|          |                                           |       |          |                            |                            |                                |                                        |                          |
| 8        | Life Cycle O&M Costs                      | LS    | 1        | \$11,396,741               | \$9,598,332                | \$6,638,706                    | \$1,286,408                            | \$747,614                |
| 9        | O&M Contingency                           | LS    | 1        | \$3,419,022                | \$2,879,500                | \$1,991,612                    | \$385,922                              | \$224,284                |
| 10       | O&M Total Costs                           | LS    | 1        | \$14,815,763               | \$12,477,832               | \$8,630,317                    | \$1,672,331                            | \$971,898                |
|          |                                           |       |          |                            |                            |                                |                                        |                          |
| 11       | Annualized O&M Costs                      | LS    | 1        | \$617,500                  | \$520,100                  | \$359,700                      | \$69,700                               | \$40,600                 |
|          |                                           |       |          |                            |                            |                                |                                        |                          |
| 12       | Total Annualized Project Costs            | LS    | 1        | \$656,800                  | \$653,500                  | \$382,600                      | \$97,500                               | \$64,800                 |
|          |                                           |       |          |                            |                            |                                |                                        |                          |

#### PROBLEM LOCATION 5: ROCK CANYON TO BELOW RINCON/TONUCO DRAIN OUTLET

|          |                                      |     |          | S                          | ediment Removal Alternative | es                             | Non-Sediment Removal Alternatives |                          |  |
|----------|--------------------------------------|-----|----------|----------------------------|-----------------------------|--------------------------------|-----------------------------------|--------------------------|--|
| Item No. | Item Description                     | UOM | Quantity | Channel Excavation (Short) | Channel Excavation (Long)   | Channel Excavation (Localized) | Sediment Traps in Arroyos         | Low-Elevation Spur Dikes |  |
|          |                                      |     |          | Total Costs                | Total Costs                 | Total Costs                    | Total Costs                       | Total Costs              |  |
| 1        | Total Construction Costs             | LS  | 1        | \$957,609                  | \$957,609                   | \$957,609                      | \$957,609                         | \$957,609                |  |
| 2        | Planning, Engineering & Design (PED) | LS  | 1        | \$957,609                  | \$957,609                   | \$957,609                      | \$957,609                         | \$957,609                |  |
| 3        | Construction Management (CM)         | LS  | 1        | \$957,609                  | \$957,609                   | \$957,609                      | \$957,609                         | \$957,609                |  |
| 4        | Construction Subtotal                | LS  | 1        | \$2,872,826                | \$2,872,826                 | \$2,872,826                    | \$2,872,826                       | \$2,872,826              |  |
| 5        | Construction Contingency             | LS  | 1        | \$957,609                  | \$957,609                   | \$957,609                      | \$957,609                         | \$957,609                |  |
| 6        | Total First Costs                    | LS  | 1        | \$3,830,434                | \$3,830,434                 | \$3,830,434                    | \$3,830,434                       | \$3,830,434              |  |
|          |                                      |     |          |                            |                             |                                |                                   |                          |  |
| 7        | Annualized First Costs               | LS  | 1        | \$159,700                  | \$159,700                   | \$159,700                      | \$159,700                         | \$159,700                |  |
|          |                                      |     |          |                            |                             |                                |                                   |                          |  |
| 8        | Life Cycle O&M Costs                 | LS  | 1        | \$2,671,117                | \$2,025,190                 | \$3,052,870                    | \$297,412                         | \$1,153,888              |  |
| 9        | O&M Contingency                      | LS  | 1        | \$801,335                  | \$607,557                   | \$915,861                      | \$89,224                          | \$346,166                |  |
| 10       | O&M Total Costs                      | LS  | 1        | \$3,472,452                | \$2,632,747                 | \$3,968,730                    | \$386,636                         | \$1,500,055              |  |
|          |                                      |     |          |                            |                             |                                |                                   |                          |  |
| 11       | Annualized O&M Costs                 | LS  | 1        | \$144,800                  | \$109,800                   | \$165,500                      | \$16,200                          | \$62,600                 |  |
|          |                                      |     |          |                            |                             |                                |                                   |                          |  |
| 12       | Total Annualized Project Costs       | LS  | 1        | \$304,500                  | \$269,500                   | \$325,200                      | \$175,900                         | \$222,300                |  |
|          |                                      |     |          |                            |                             |                                |                                   |                          |  |

#### PROBLEM LOCATION 6: PICACHO DRAIN TO BELOW MESILLA DAM

|          |                                      |     |          | Sediment Remo              | val Alternatives          | Non-                                     | ives                        |                              |
|----------|--------------------------------------|-----|----------|----------------------------|---------------------------|------------------------------------------|-----------------------------|------------------------------|
| Item No. | Item Description                     | UOM | Quantity | Channel Excavation (Short) | Channel Excavation (Long) | New Check/Sluice Structures in<br>Canals | Mesilla Dam Gate Automation | Installation of Vortex Tubes |
|          |                                      |     |          | Total Costs                | Total Costs               | Total Costs                              | Total Costs                 | Total Costs                  |
| 1        | Total Construction Costs             | LS  | 1        | \$332,117                  | \$544,351                 | \$2,127,960                              | \$2,300,000                 | \$272,550                    |
| 2        | Planning, Engineering & Design (PED) | LS  | 1        | \$49,817                   | \$81,653                  | \$319,194                                | \$345,000                   | \$40,883                     |
| 3        | Construction Management (CM)         | LS  | 1        | \$33,212                   | \$54,435                  | \$212,796                                | \$230,000                   | \$27,255                     |
| 4        | Construction Subtotal                | LS  | 1        | \$415,146                  | \$680,438                 | \$2,659,950                              | \$2,875,000                 | \$340,688                    |
| 5        | Construction Contingency             | LS  | 1        | \$99,635                   | \$163,305                 | \$638,388                                | \$690,000                   | \$81,765                     |
| 6        | Total First Costs                    | LS  | 1        | \$514,781                  | \$843,744                 | \$3,298,338                              | \$3,565,000                 | \$422,453                    |
|          |                                      |     |          |                            |                           |                                          |                             |                              |
| 7        | Annualized First Costs               | LS  | 1        | \$21,500                   | \$35,200                  | \$137,500                                | \$148,600                   | \$17,700                     |
|          |                                      |     |          |                            |                           |                                          |                             |                              |
| 8        | Life Cycle O&M Costs                 | LS  | 1        | \$23,580,275               | \$3,919,326               | \$319,194                                | \$287,500                   | \$136,275                    |
| 9        | O&M Contingency                      | LS  | 1        | \$7,074,083                | \$1,175,798               | \$95,758                                 | \$86,250                    | \$40,883                     |
| 10       | O&M Total Costs                      | LS  | 1        | \$30,654,358               | \$5,095,123               | \$414,952                                | \$373,750                   | \$177,158                    |
|          |                                      |     |          |                            |                           |                                          |                             |                              |
| 11       | Annualized O&M Costs                 | LS  | 1        | \$1,277,600                | \$212,400                 | \$17,300                                 | \$15,600                    | \$7,400                      |
|          |                                      |     |          |                            |                           |                                          |                             |                              |
| 12       | Total Annualized Project Costs       | LS  | 1        | \$1,299,100                | \$247,600                 | \$154,800                                | \$164,200                   | \$25,100                     |
|          |                                      |     |          |                            |                           |                                          |                             |                              |



#### TOTAL ANNUAL COSTS BY PROBLEM LOCATION AND ALTERNATIVE

#### Page 3 of 3

| PROBL    | EM LOCATION 7: EAST DRAIN TO BELOW VINTON | BRIDGE |          |                            |                            |                                |                           |                          |
|----------|-------------------------------------------|--------|----------|----------------------------|----------------------------|--------------------------------|---------------------------|--------------------------|
|          |                                           |        |          | S                          | ediment Removal Alternativ | es                             | Non-Sediment Ren          | noval Alternatives       |
| Item No. | Item Description                          | UOM    | Quantity | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized) | Sediment Traps in Arroyos | Low-Elevation Spur Dikes |
|          |                                           |        |          | Total Costs                | Total Costs                | Total Costs                    | Total Costs               | Total Costs              |
| 1        | Total Construction Costs                  | LS     | 1        | \$357,561                  | \$452,902                  | \$41,281                       | \$387,117                 | \$409,567                |
| 2        | Planning, Engineering & Design (PED)      | LS     | 1        | \$53,634                   | \$67,935                   | \$6,192                        | \$58,068                  | \$61,435                 |
| 3        | Construction Management (CM)              | LS     | 1        | \$35,756                   | \$45,290                   | \$4,128                        | \$38,712                  | \$40,957                 |
| 4        | Construction Subtotal                     | LS     | 1        | \$446,951                  | \$566, 128                 | \$51,601                       | \$483,896                 | \$511,958                |
| 5        | Construction Contingency                  | LS     | 1        | \$107,268                  | \$135,871                  | \$12,384                       | \$116,135                 | \$122,870                |
| 6        | Total First Costs                         | LS     | 1        | \$554,219                  | \$701,998                  | \$63,986                       | \$600,031                 | \$634,828                |
|          |                                           |        |          |                            |                            |                                |                           |                          |
| 7        | Annualized First Costs                    | LS     | 1        | \$23,100                   | \$29,300                   | \$2,700                        | \$25,100                  | \$26,500                 |
|          |                                           |        |          |                            |                            |                                |                           |                          |
| 8        | Life Cycle O&M Costs                      | LS     | 1        | \$2,302,692                | \$2,500,020                | \$774,018                      | \$966,243                 | \$819,134                |
| 9        | O&M Contingency                           | LS     | 1        | \$690,808                  | \$750,006                  | \$232,205                      | \$289,873                 | \$245,740                |
| 10       | O&M Total Costs                           | LS     | 1        | \$2,993,500                | \$3,250,026                | \$1,006,224                    | \$1,256,116               | \$1,064,874              |
|          |                                           |        |          |                            |                            |                                |                           |                          |
| 11       | Annualized O&M Costs                      | LS     | 1        | \$124,800                  | \$135,500                  | \$42,000                       | \$52,400                  | \$44,400                 |
|          |                                           |        |          |                            |                            |                                |                           |                          |
| 12       | Total Annualized Project Costs            | LS     | 1        | \$147,900                  | \$164,800                  | \$44,700                       | \$77,500                  | \$70,900                 |
|          |                                           |        |          |                            |                            |                                |                           |                          |

| PROBL    | EM LOCATION 8: ABOVE COUNTRY CLUB BRIDGE | TO NEME | XAS SIPHON |                            |                            |                                |                                      |                          |
|----------|------------------------------------------|---------|------------|----------------------------|----------------------------|--------------------------------|--------------------------------------|--------------------------|
|          |                                          |         |            | S                          | ediment Removal Alternativ | les                            | Non-Sediment Ren                     | noval Alternatives       |
| Item No. | Item Description                         | UOM     | Quantity   | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized) | Riprap in Narrow Floodplain<br>Areas | Low-Elevation Spur Dikes |
|          |                                          |         |            | Total Costs                | Total Costs                | Total Costs                    | Total Costs                          | Total Costs              |
| 1        | Total Construction Costs                 | LS      | 1          | \$200,716                  | \$402,811                  | \$82,660                       | \$268,008                            | \$197,011                |
| 2        | Planning, Engineering & Design (PED)     | LS      | 1          | \$30,107                   | \$60,422                   | \$12,399                       | \$40,201                             | \$29,552                 |
| 3        | Construction Management (CM)             | LS      | 1          | \$20,072                   | \$40,281                   | \$8,266                        | \$26,801                             | \$19,701                 |
| 4        | Construction Subtotal                    | LS      | 1          | \$250,896                  | \$503,513                  | \$103,325                      | \$335,009                            | \$246,264                |
| 5        | Construction Contingency                 | LS      | 1          | \$60,215                   | \$120,843                  | \$24,798                       | \$80,402                             | \$59,103                 |
| 6        | Total First Costs                        | LS      | 1          | \$311,110                  | \$624,356                  | \$128,123                      | \$415,412                            | \$305,367                |
|          |                                          |         |            |                            |                            |                                |                                      |                          |
| 7        | Annualized First Costs                   | LS      | 1          | \$13,000                   | \$26,100                   | \$5,400                        | \$17,400                             | \$12,800                 |
|          |                                          |         |            |                            |                            |                                |                                      |                          |
| 8        | Life Cycle O&M Costs                     | LS      | 1          | \$3,763,433                | \$4,108,667                | \$2,479,808                    | \$201,006                            | \$394,022                |
| 9        | O&M Contingency                          | LS      | 1          | \$1,129,030                | \$1,232,600                | \$743,942                      | \$60,302                             | \$118,207                |
| 10       | O&M Total Costs                          | LS      | 1          | \$4,892,462                | \$5,341,267                | \$3,223,751                    | \$261,307                            | \$512,229                |
|          |                                          |         |            |                            |                            |                                |                                      |                          |
| 11       | Annualized O&M Costs                     | LS      | 1          | \$204,000                  | \$222,700                  | \$134,400                      | \$10,900                             | \$21,400                 |
|          |                                          |         |            |                            |                            |                                |                                      |                          |
| 12       | Total Annualized Project Costs           | LS      | 1          | \$217,000                  | \$248,800                  | \$139,800                      | \$28,300                             | \$34,200                 |
|          |                                          |         |            |                            |                            |                                |                                      |                          |

#### PROBLEM LOCATION 9: MONTOYA DRAIN TO AMERICAN DAM

|          |                                      |     |          | 5                          | ediment Removal Alternativ | es                             | Non-Sediment Rer                               | noval Alternatives       |
|----------|--------------------------------------|-----|----------|----------------------------|----------------------------|--------------------------------|------------------------------------------------|--------------------------|
| Item No. | Item Description                     | UOM | Quantity | Channel Excavation (Short) | Channel Excavation (Long)  | Channel Excavation (Localized) | Island Destabilization /<br>Vegetation Removal | Low-Elevation Spur Dikes |
|          |                                      |     |          | Total Costs                | Total Costs                | Total Costs                    | Total Costs                                    | Total Costs              |
| 1        | Total Construction Costs             | LS  | 1        | \$362,602                  | \$1,646,860                | \$145,432                      | \$141,632                                      | \$150,219                |
| 2        | Planning, Engineering & Design (PED) | LS  | 1        | \$54,390                   | \$247,029                  | \$21,815                       | \$21,245                                       | \$22,533                 |
| 3        | Construction Management (CM)         | LS  | 1        | \$36,260                   | \$164,686                  | \$14,543                       | \$14,163                                       | \$15,022                 |
| 4        | Construction Subtotal                | LS  | 1        | \$453,253                  | \$2,058,575                | \$181,790                      | \$177,040                                      | \$187,774                |
| 5        | Construction Contingency             | LS  | 1        | \$108,781                  | \$494,058                  | \$43,630                       | \$42,490                                       | \$45,066                 |
| 6        | Total First Costs                    | LS  | 1        | \$562,034                  | \$2,552,634                | \$225,419                      | \$219,529                                      | \$232,840                |
|          |                                      |     |          |                            |                            |                                |                                                |                          |
| 7        | Annualized First Costs               | LS  | 1        | \$23,500                   | \$106,400                  | \$9,400                        | \$9,200                                        | \$9,800                  |
|          |                                      |     |          |                            |                            |                                |                                                |                          |
| 8        | Life Cycle O&M Costs                 | LS  | 1        | \$4,583,295                | \$7,904,930                | \$10,398,379                   | \$424,896                                      | \$300,439                |
| 9        | O&M Contingency                      | LS  | 1        | \$1,374,989                | \$2,371,479                | \$3,119,514                    | \$127,469                                      | \$90,132                 |
| 10       | O&M Total Costs                      | LS  | 1        | \$5,958,284                | \$10,276,409               | \$13,517,893                   | \$552,364                                      | \$390,570                |
|          |                                      |     |          |                            |                            |                                |                                                |                          |
| 11       | Annualized O&M Costs                 | LS  | 1        | \$248,400                  | \$428,300                  | \$563,400                      | \$23,100                                       | \$16,300                 |
|          |                                      |     |          |                            |                            |                                |                                                |                          |
| 12       | Total Annualized Project Costs       | LS  | 1        | \$271,900                  | \$534,700                  | \$572,800                      | \$32,300                                       | \$26,100                 |
|          |                                      |     |          |                            |                            |                                |                                                |                          |



PROJECT: Rio Grande Canalization Project - Alternative Cost Estimates DETAIL: Problem Location 1 - Cost and Quantities COMPUTED BY: SKV CHECKED BY: IGP

PROBLEM LOCATION 1: TIERRA BLANCA CREEK TO SIBLEY ARROYO

PROJECT NO: T33261 DATE: 8/25/2015

Page 1 of 2

|          |                                                     |      |             |             | S                | ediment Rem | noval Alternativ | res          |                    | Non-Sediment Removal Alternatives |                |              |                          |
|----------|-----------------------------------------------------|------|-------------|-------------|------------------|-------------|------------------|--------------|--------------------|-----------------------------------|----------------|--------------|--------------------------|
| Item No. | Item Description                                    | UOM  | Unit Cost   | Channel Exe | cavation (Short) | Channel Exc | cavation (Long)  | Channel Exca | vation (Localized) | Sediment Tr                       | aps in Arroyos | Modification | of the TB Vortex<br>Weir |
|          |                                                     |      |             | Quant.      | Total Cost       | Quant.      | Total Cost       | Quant.       | Total Cost         | Quant.                            | Total Cost     | Quant.       | Total Cost               |
| 1        | Mobilization / Demobilization                       | LS   | 12.50%      | 1           | \$21,318         | 1           | \$50,323         | 1            | \$6,383            | 1                                 | \$76,783       | 1            | \$2,180                  |
| 2        | Site Access and Staging                             | LS   | 2.50%       | 1           | \$4,264          | 1           | \$10,065         | 1            | \$1,277            | 1                                 | \$15,357       | 1            | \$436                    |
| 3        | Clearing and Grubbing                               | ACRE | \$2,000.00  | 2.6         | \$5,120          | 6.0         | \$12,000         | 2.4          | \$4,780            | 9.8                               | \$19,600       | 1.0          | \$2,000                  |
| 4        | Excavation (Sediment Removal)                       | CY   | \$2.75      | 20,550      | \$56,513         | 48,520      | \$133,430        | 5,750        | \$15,813           | 0                                 | \$0            | 0            | \$0                      |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY   | \$3.80      | 20,550      | \$78,090         | 48,520      | \$184,376        | 5,750        | \$21,850           | 0                                 | \$0            | 0            | \$0                      |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY   | \$1.50      | 20,550      | \$30,825         | 48,520      | \$72,780         | 5,750        | \$8,625            | 0                                 | \$0            | 0            | \$0                      |
| 7        | Excavation (Sediment Traps)                         | CY   | \$4.25      | 0           | \$0              | 0           | \$0              | 0            | \$0                | 59,532                            | \$253,011      | 0            | \$0                      |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF   | \$50.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 360                               | \$18,000       | 0            | \$0                      |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF   | \$75.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 525                               | \$39,375       | 0            | \$0                      |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF   | \$85.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 560                               | \$47,600       | 0            | \$0                      |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF   | \$30.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 575                               | \$17,250       | 0            | \$0                      |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF   | \$55.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 440                               | \$24,200       | 0            | \$0                      |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF   | \$70.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY   | \$3.50      | 0           | \$0              | 0           | \$0              | 0            | \$0                | 3,125                             | \$10,938       | 0            | \$0                      |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY   | \$15.25     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 350                               | \$5,338        | 0            | \$0                      |
| 16       | Pilot Channel Excavation                            | CY   | \$6.50      | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 2,222        | \$14,443                 |
| 17       | Maintenance Road                                    | SF   | \$2.00      | 0           | \$0              | 0           | \$0              | 0            | \$0                | 29,475                            | \$58,950       | 0            | \$0                      |
| 18       | Debris Rack                                         | EA   | \$40,000.00 | 0           | \$0              | 0           | \$0              | 0            | \$0                | 3                                 | \$120,000      | 0            | \$0                      |
| 19       | Structural Excavation                               | CY   | \$10.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 50           | \$500                    |
| 20       | Rock Removal                                        | CY   | \$20.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 25           | \$500                    |
| 21       | Sheet Pile Wall Demolition                          | LF   | \$100.00    | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 22       | Demo Existing Siphon                                | LF   | \$52.50     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 23       | Reinforced Concrete Box                             | CY   | \$800.00    | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 24       | Spur Dike Stone                                     | CY   | \$70.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 25       | Over-excavation (Spur Dikes)                        | CY   | \$10.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 26       | Compacted Backfill (Spur Dikes)                     | CY   | \$5.50      | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 27       | Bank Protection Bedding                             | CY   | \$40.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 28       | Bank Protection Riprap                              | CY   | \$70.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 29       | Concrete Sill                                       | CY   | \$625.00    | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 30       | Vortex Tube                                         | LF   | \$25.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 31       | Escape Channels                                     | LF   | \$35.00     | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 32       | Control Gate                                        | EA   | \$2,000.00  | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 33       | 12-in CMP Culvert                                   | EA   | \$1,500.00  | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 34       | Eastside Canal Overflow Check and Bypass            | EA   | \$800,000   | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 35       | Westside Canal Overflow Check and Bypass            | EA   | \$1,050,000 | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |
| 36       | Mesilla Dam Gate Automation                         | EA   | \$1,000,000 | 0           | \$0              | 0           | \$0              | 0            | \$0                | 0                                 | \$0            | 0            | \$0                      |

| Total Construction Cost per Alternative:   | \$196,130 | \$462,974 | \$58,728 | \$706,400   | \$20,059 |
|--------------------------------------------|-----------|-----------|----------|-------------|----------|
| Planning, Engineering & Design (PED - 15%) | \$29,419  | \$69,446  | \$8,809  | \$105,960   | \$3,009  |
| Construction Management (CM - 10%)         | \$19,613  | \$46,297  | \$5,873  | \$70,640    | \$2,006  |
| Sub-total Cost (1):                        | \$245,162 | \$578,717 | \$73,410 | \$883,000   | \$25,074 |
| Construction Continency (30%):             | \$58,839  | \$138,892 | \$17,618 | \$211,920   | \$6,018  |
| Total Construction Cost:                   | \$304,001 | \$717,610 | \$91,028 | \$1,094,920 | \$31,092 |
|                                            |           |           |          |             |          |



PROJECT: Rio Grande Canalization Project - Alternative Cost Estimates DETAIL: Problem Location 1 - Cost and Quantities COMPUTED BY: SKV CHECKED BY: IGP

PROBLEM LOCATION 1: TIERRA BLANCA CREEK TO SIBLEY ARROYO

|      | n             |                                         |                | O&M C       | OSTS BY ALTE     | RNATIVE      |                  |              |                      |                           |                  |                                       |            |
|------|---------------|-----------------------------------------|----------------|-------------|------------------|--------------|------------------|--------------|----------------------|---------------------------|------------------|---------------------------------------|------------|
|      |               |                                         |                |             | S                | ediment Ren  | noval Alternativ |              | No                   | n-Sediment Re             | moval Altern     | atives                                |            |
| Year | O&M Year      | UOM                                     | Unit Cost      | Channel Exc | cavation (Short) | Channel Ex   | cavation (Long)  | Channel Exca | vation (Localized)   | Sediment Traps in Arroyos |                  | Modification of the TB Vortex<br>Weir |            |
|      |               |                                         |                | O&M %       | Total Cost       | O&M %        | Total Cost       | O&M %        | Total Cost           | O&M %                     | Total Cost       | O&M %                                 | Total Cost |
| 1    | O&M Year 1    | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 2    | O&M Year 2    | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 3    | O&M Year 3    | LS                                      | % of Const.    | 85.0%       | \$166,710        | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 4    | O&M Year 4    | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 5    | O&M Year 5    | LS                                      | % of Const.    | 0.0%        | \$0              | 89.0%        | \$412,047        | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 6    | O&M Year 6    | LS                                      | % of Const.    | 85.0%       | \$166,710        | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 7    | O&M Year 7    | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 8    | O&M Year 8    | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 9    | O&M Year 9    | LS                                      | % of Const.    | 85.0%       | \$166,710        | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 10   | O&M Year 10   | LS                                      | % of Const.    | 0.0%        | \$0              | 89.0%        | \$412,047        | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 50.0%                                 | \$10,030   |
| 11   | O&M Year 11   | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 12   | O&M Year 12   | LS                                      | % of Const.    | 85.0%       | \$166,710        | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 13   | O&M Year 13   | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 14   | O&M Year 14   | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 15   | O&M Year 15   | LS                                      | % of Const.    | 85.0%       | \$166,710        | 89.0%        | \$412,047        | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 16   | O&M Year 16   | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 17   | O&M Year 17   | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 18   | O&M Year 18   | LS                                      | % of Const.    | 85.0%       | \$166,710        | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 19   | O&M Year 19   | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 20   | O&M Year 20   | LS                                      | % of Const.    | 0.0%        | \$0              | 89.0%        | \$412,047        | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 50.0%                                 | \$10,030   |
| 21   | O&M Year 21   | LS                                      | % of Const.    | 85.0%       | \$166,710        | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 22   | O&M Year 22   | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 23   | O&M Year 23   | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 24   | O&M Year 24   | LS                                      | % of Const.    | 85.0%       | \$166,710        | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 25   | O&M Year 25   | LS                                      | % of Const.    | 0.0%        | \$0              | 89.0%        | \$412,047        | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 26   | O&M Year 26   | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 27   | O&M Year 27   | LS                                      | % of Const.    | 85.0%       | \$166,710        | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 28   | O&M Year 28   | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 29   | O&M Year 29   | LS                                      | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 30   | O&M Year 30   | LS                                      | % of Const.    | 85.0%       | \$166,710        | 89.0%        | \$412,047        | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 50.0%                                 | \$10,030   |
| 31   | O&M Year 31   | LS                                      | % of Const.    | 0.0%        | \$U<br>\$0       | 0.0%         | \$U<br>\$0       | 62.5%        | \$36,705             | 0.0%                      | \$U<br>\$470.000 | 0.0%                                  | \$0        |
| 32   | O&M Year 32   | LS                                      | % of Const.    | 0.0%        | \$U<br>\$400 740 | 0.0%         | \$U<br>\$0       | 62.5%        | \$36,705             | 25.0%                     | \$176,600        | 0.0%                                  | \$0        |
| 33   | O&M Year 33   | LS                                      | % of Const.    | 85.0%       | \$166,710        | 0.0%         | \$U<br>\$0       | 62.5%        | \$36,705             | 0.0%                      | \$U<br>\$176.600 | 0.0%                                  | \$0        |
| 34   | O&M Year 34   | LS                                      | % of Const.    | 0.0%        | \$0<br>\$0       | 0.0%         | φU<br>€412.047   | 62.5%        | \$30,703             | 23.0%                     | \$176,600        | 0.0%                                  | \$U<br>\$0 |
| 35   | O&M Year 35   | LS                                      | % of Const.    | 0.0%        | ΦU<br>\$166.710  | 0.0%         | \$412,047        | 62.5%        | \$30,703             | 0.0%                      | \$U<br>\$176.600 | 0.0%                                  | 50         |
| 36   | ORM Vere 07   | LS                                      | % of Const.    | 0.0%        | \$100,710        | 0.0%         | 0¢               | 62.5%        | \$30,705<br>\$36,705 | 25.0%                     | \$170,000<br>\$0 | 0.0%                                  | 90<br>80   |
| 37   | O&M Year 37   | LS                                      | % of Const.    | 0.0%        | \$0<br>\$0       | 0.0%         | \$0<br>\$0       | 62.5%        | \$30,703             | 0.0%                      | \$U<br>\$176.600 | 0.0%                                  | 50         |
| 38   |               | LO                                      | % of Const.    | 85.0%       | φυ<br>\$166.710  | 0.0%         | φυ<br>\$0        | 62.5%        | \$36,705             | 25.0%                     | \$170,000        | 0.0%                                  | \$0        |
| 39   | ORM Voor 40   | LO                                      | % of Const.    | 0.0%        | \$100,710<br>¢∩  | 80.0%        | \$412.047        | 62.5%        | \$36.705             | 25.0%                     | \$176.600        | 50.0%                                 | \$10.020   |
| 40   | ORM Voor 41   | 10                                      | % of Const     | 0.0%        | 90<br>\$0        | 0.0%         | φ+12,047<br>\$0  | 62.5%        | \$36,705             | 23.0%                     | \$170,000<br>\$0 | 0.0%                                  | \$0,030    |
| 41   | O&M Year 41   | LS                                      | % of Const.    | 95.0%       | \$166 710        | 0.0%         | \$0<br>\$0       | 62.5%        | \$36,705             | 25.0%                     | \$176.600        | 0.0%                                  | \$0        |
| 42   | ORM Voor 42   | 19                                      | % of Const     | 0.0%        | \$100,710        | 0.0%         | \$0              | 62.5%        | \$36,705             | 0.0%                      | \$170,000        | 0.0%                                  | \$0        |
| 43   | O&M Year 44   | 1.5                                     | % of Const.    | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176.600        | 0.0%                                  | \$0        |
| 44   | O&M Year 45   | 19                                      | % of Const     | 85.0%       | \$166 710        | 89.0%        | \$412.047        | 62.5%        | \$36 705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 40   | O&M Year 46   | 15                                      | % of Const     | 0.0%        | \$100,710        | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176.600        | 0.0%                                  | \$0        |
| 40   | O&M Year 47   | 19                                      | % of Const     | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36 705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 47   | O&M Year 48   | 15                                      | % of Const     | 85.0%       | \$166 710        | 0.0%         | \$0              | 62.5%        | \$36,705             | 25.0%                     | \$176.600        | 0.0%                                  | \$0        |
| 40   | O&M Year 49   | 19                                      | % of Const     | 0.0%        | \$0              | 0.0%         | \$0              | 62.5%        | \$36 705             | 0.0%                      | \$0              | 0.0%                                  | \$0        |
| 49   | O&M Year 50   | 19                                      | % of Const.    | 0.0%        | \$0              | 89.0%        | \$412.047        | 62.5%        | \$36 705             | 25.0%                     | \$176.600        | 50.0%                                 | \$10.030   |
|      | Odivi Teal Oo | ,3 01 00113L                            | 0.070          | ψυ          | 00.070           | ψτι2,04/     | 02.070           | φ00,700      | 20.070               | \$170,000                 | 00.078           | ψ10,000                               |            |
|      | Tota          | 0.08M Cor                               | t per Location | ¢0.6        | 67 363           | ¢. ı A       | 20.468           | ¢1 0         | 35 238               | ¢1/                       | 115 001          | ¢s                                    | 0 149      |
|      | Tota          | O&M Co                                  | ntinency (30%) | φ2,0<br>¢ο/ | 0 209            | \$4,<br>¢1 / | 236 140          | φ1,0<br>¢51  | 50 571               | \$4,415,001               |                  | \$15.045                              |            |
|      |               | Till Till Till Till Till Till Till Till | otal O&M Cost: | \$3.4       | 67.572           | \$5.3        | 356.608          | \$2.3        | 885.810              | \$5.7                     | 739.501          | \$6                                   | 5.193      |
|      |               | -                                       |                |             |                  |              |                  |              |                      |                           |                  |                                       |            |



PROJECT: **Rio Grande Canalization Project - Alternative Cost Estimates** DETAIL: *Problem Location 2 - Cost and Quantities* COMPUTED BY: SKV CHECKED BY: IGP

#### PROBLEM LOCATION 2: SALEM BRIDGE TO PLACITAS ARROYO

PROJECT NO: T33261 DATE: 8/25/2015

| Page 1 of 2 |
|-------------|
|-------------|

| Image: base base base base base base base base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | CONSTRUCTION COSTS BY ALLEKNATIVE Sediment Removal Alternatives Non-Sediment Personal Alternatives |      |             |            |                  |             |                  |              |                    |            |                 |                       |                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------|------|-------------|------------|------------------|-------------|------------------|--------------|--------------------|------------|-----------------|-----------------------|--------------------------------|--|
| Interpart<br>Image:Interpart<br>ProductConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConstConst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                                                    |      |             |            | S                | ediment Rem | noval Alternativ | res          |                    | No         | n-Sediment Re   | moval Altern          | atives                         |  |
| Image: Notation (LS 12,6%)         Outs (Table (LS 12,8)         Out (LS 12,8)         Total Cest (LS 12,8)         Out (LS 12,8)         Total Cest (LS 12,8)         Outs (LS 12,8)         Total Cest (LS 12,8)         I         Selection (LS 12,8)         Sele                        | Item No. | Item Description                                                                                   | UOM  | Unit Cost   | Channel Ex | cavation (Short) | Channel Exe | cavation (Long)  | Channel Exca | vation (Localized) | Sediment T | raps in Arroyos | Island De<br>Vegetati | stabilization /<br>ion Removal |  |
| 1       Meditator/Constand Singing       LS       12,0%       1       378,0%       1       571,0%       1       573,0%         2       Dearing and Gruebing       ACRE       2,000,0       4.4       58,700       6.0       512,000       1.4       52,000       5.9       511,800       59,981       511,800       27,981       567,876         3       Load/Hau Io Load/Bopcad Site Godment Removal)       CY       52,70       45,800       522,580       128,809       542,804       64,580       578,976       500       500       27,991       516,376         6       Compacted Fill al Depocad Site Godment Removal)       CY       51,50       44,580       520,700       00       500       600       500       250       51,50       600       500       200       51,60       500       500       500       500       500       500       51,60       600       500       500       500       500       500       51,60       600       500       500       51,60       600       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                    |      |             | Quant.     | Total Cost       | Quant.      | Total Cost       | Quant.       | Total Cost         | Quant.     | Total Cost      | Quant.                | Total Cost                     |  |
| 2         Ste Access and Staging         LS         2.2.97%         1         \$7.238         1         \$28.877         1         \$28.877         1         \$28.877         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         1         \$28.387         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         5         0         <                                                                                                                                                                                                                                                                                                                     | 1        | Mobilization / Demobilization                                                                      | LS   | 12.50%      | 1          | \$86,196         | 1           | \$129,183        | 1            | \$46,806           | 1          | \$50,569        | 1                     | \$36,841                       |  |
| 3.         Clearing and Gubbing         ACRE         82.000.0         44.         83.700         6.0         \$12.000         1.4.         82.700         5.0         5.11.800         34.7         \$89.400           4         Exacutation Godiment Removal)         CY         \$25.76         \$45.800         \$25.800         \$48.948         45.180         \$175.484         0.0         \$0         27.991         \$5106.397           6         Compated Fill at Dapati Site (Sediment Removal)         CY         \$45.0         \$22.400         \$28.90         \$40.303         46.180         \$50.0         0         \$20         \$34.500         0         \$30         0         \$30         23.00         \$40.00         \$30         0         \$30         0         \$30         23.00         \$44.218         0         \$20         \$44.500         \$45.00         \$45.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00         \$40.00                                                                                                                                                                                                      | 2        | Site Access and Staging                                                                            | LS   | 2.50%       | 1          | \$17,239         | 1           | \$25,837         | 1            | \$9,361            | 1          | \$10,114        | 1                     | \$7,368                        |  |
| 4         Excaration (Sediment Ramoval)         CV         \$2.75         84.80         \$232,564         126.800         \$343,845         46.180         \$175,844         0         \$50         27.991         \$105,037           6         Compacted Fill Disposal Site (Sediment Ramoval)         CV         \$1.50         845,800         \$282,160         \$100,335         46180         \$175,844         0         \$50         27.991         \$105,037           7         Excavation (Sediment Trap)         UF         \$50,00         0         \$00         50         0.8         \$39,822         \$144,424         0.8         \$50         350         339,823         \$144,243         0.8         \$50         350         350         \$39,823         \$144,243         0.8         \$50         350         \$30         350         \$31,50         0.0         \$50         30         0.8         \$30         0.8         \$30         0.8         \$30         0.8         \$30         0.8         \$30         0.8         \$30         0.8         \$30         0.8         \$30         0.8         \$30         0.8         \$30         0.8         \$30         0.8         \$30         0.8         \$30         0.8         \$30         0.8         \$30 </td <td>3</td> <td>Clearing and Grubbing</td> <td>ACRE</td> <td>\$2,000.00</td> <td>4.4</td> <td>\$8,700</td> <td>6.0</td> <td>\$12,000</td> <td>1.4</td> <td>\$2,700</td> <td>5.9</td> <td>\$11,800</td> <td>34.7</td> <td>\$69,400</td> | 3        | Clearing and Grubbing                                                                              | ACRE | \$2,000.00  | 4.4        | \$8,700          | 6.0         | \$12,000         | 1.4          | \$2,700            | 5.9        | \$11,800        | 34.7                  | \$69,400                       |  |
| 5         LaadHaut to Load Disposal Site (Sadment Remova)         CV         \$13.00         \$43.80         \$321,440         128.800         \$44.180         \$190,333         \$44.180         \$190,333         \$41.807         \$27.991         \$11.807           7         Excavation (Sadment Trap)         CY         \$41.50         \$00         \$00         \$00         \$00         \$00         \$00         \$20         \$01         \$20         \$14.424         \$0         \$00           8         It Rebar Mesh (Sadment Trap)         LF         \$57.00         \$0         \$20         \$0         \$20         \$0         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20         \$20<                                                                                                                                                                                                                     | 4        | Excavation (Sediment Removal)                                                                      | CY   | \$2.75      | 84,580     | \$232,595        | 126,890     | \$348,948        | 46,180       | \$126,995          | 0          | \$0             | 27,991                | \$76,976                       |  |
| 6         Comparted Fill Disposal Site (gedment Removal)         CY         \$1.50         \$4.800         \$10.200         \$40.300         \$40.180         \$50.300         \$0.0         \$50         \$30.335         \$41.800         \$50.300         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0         \$0.0<                                                                                                                                                                                    | 5        | Load/Haul to Local Disposal Site (Sediment Removal)                                                | CY   | \$3.80      | 84,580     | \$321,404        | 126,890     | \$482,182        | 46,180       | \$175,484          | 0          | \$0             | 27,991                | \$106,367                      |  |
| T       Excavation (sedement Trap)       CY       54.25       0       50       0       50       0       50       0       50       0       50       0       50       0       50       0       50       0       50       0       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       50       00       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6        | Compacted Fill at Disposal Site (Sediment Removal)                                                 | CY   | \$1.50      | 84,580     | \$126,870        | 126,890     | \$190,335        | 46,180       | \$69,270           | 0          | \$0             | 27,991                | \$41,987                       |  |
| 8         1+ft Refar Mesh (Sediment Trap)         LF         \$50.0         0         \$0         \$0         \$0         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00 <td>7</td> <td>Excavation (Sediment Traps)</td> <td>CY</td> <td>\$4.25</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>33,982</td> <td>\$144,424</td> <td>0</td> <td>\$0</td>                         | 7        | Excavation (Sediment Traps)                                                                        | CY   | \$4.25      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 33,982     | \$144,424       | 0                     | \$0                            |  |
| 9         bin Rebar Mesh (Sediment Trap)         LF         \$75.00         0         \$0         0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$                                                                                                                                                                                                                                              | 8        | 1-ft Rebar Mesh (Sediment Trap)                                                                    | LF   | \$50.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 290        | \$14,500        | 0                     | \$0                            |  |
| 10       ein Rebar Mesh (Sediment Trap)       LF       \$85.00       0       \$50       0       \$50       0       \$50       0       \$50       0       \$50       0       \$50       0       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       \$50       20       50       50       20       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9        | 8-in Rebar Mesh (Sediment Trap)                                                                    | LF   | \$75.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 325        | \$24,375        | 0                     | \$0                            |  |
| 11       4-in Wire Mesh (Sediment Trap)       LF       \$30.00       0       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00                                                                                                                                                                                                                                                                                                                               | 10       | 6-in Rebar Mesh (Sediment Trap)                                                                    | LF   | \$85.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 310        | \$26,350        | 0                     | \$0                            |  |
| 12       2in Wire Mesh (Sediment Trap)       LF       \$55.00       0       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00                                                                                                                                                                                                                                                                                                                                | 11       | 4-in Wire Mesh (Sediment Trap)                                                                     | LF   | \$30.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 305        | \$9,150         | 0                     | \$0                            |  |
| 13       1-m Wire Mesh (Sediment Trap)       LF       \$7.00       00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00     <                                                                                                                                                                                                                                                                                                                          | 12       | 2-in Wire Mesh (Sediment Trap)                                                                     | LF   | \$55.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 280        | \$15,400        | 0                     | \$0                            |  |
| 14       Compacted Fill (Sediment Trap Berm)       CY       \$3.50       0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0                                                                                                                                                                                                                                                                                                                                                                             | 13       | 1-in Wire Mesh (Sediment Trap)                                                                     | LF   | \$70.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 15       Rock Stope Protection (Sediment Trap Berm)       CY       \$15.25       0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0                                                                                                                                                                                                                                                                                                                                                                     | 14       | Compacted Fill (Sediment Trap Berm)                                                                | CY   | \$3.50      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 16       Plot Channel Excavation       CY       §6.50       0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0                                                                                                                                                                                                                                                                                                                                                                                | 15       | Rock Slope Protection (Sediment Trap Berm)                                                         | CY   | \$15.25     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 17       Maintenance Road       SF       \$2.00       0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$                                                                                                                                                                                                                                                                                                                                                                             | 16       | Pilot Channel Excavation                                                                           | CY   | \$6.50      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 18       Debris Rack       EA       \$40,000.00       0       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00       \$00                                                                                                                                                                                                                                                                                                                                   | 17       | Maintenance Road                                                                                   | SF   | \$2.00      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 19,275     | \$38,550        | 0                     | \$0                            |  |
| 19       Structural Excavation       CY       \$10.00       0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0                                                                                                                                                                                                                                                                                                                                                                                | 18       | Debris Rack                                                                                        | EA   | \$40,000.00 | 0          | \$0              | 0           | \$0              | 0            | \$0                | 3          | \$120,000       | 0                     | \$0                            |  |
| 20         Rock Removal         CY         \$20.00         0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0                                                                                                                                                                                                                                                                                     | 19       | Structural Excavation                                                                              | CY   | \$10.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 21       Sheet Pile Wall Demolition       LF       \$100.00       0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0                                                                                                                                                                                                                                                                                                                                                                          | 20       | Rock Removal                                                                                       | CY   | \$20.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 22       Demo Existing Siphon       LF       \$\$2.50       0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0                                                                                                                                                                                                                                                                                                                                                                                | 21       | Sheet Pile Wall Demolition                                                                         | LF   | \$100.00    | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 23       Reinforced Concrete Box       CY       \$800.00       0       \$0       0       \$0       0       \$0       0       \$0       0       \$0       0       \$0       0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0 <t< td=""><td>22</td><td>Demo Existing Siphon</td><td>LF</td><td>\$52.50</td><td>0</td><td>\$0</td><td>0</td><td>\$0</td><td>0</td><td>\$0</td><td>0</td><td>\$0</td><td>0</td><td>\$0</td></t<>                                                                                                                                                                                        | 22       | Demo Existing Siphon                                                                               | LF   | \$52.50     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 24         Spur Dike Stone         CY         \$70.00         0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0 <td>23</td> <td>Reinforced Concrete Box</td> <td>CY</td> <td>\$800.00</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td>                                                                               | 23       | Reinforced Concrete Box                                                                            | CY   | \$800.00    | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 25       Over-excavation (Spur Dikes)       CY       \$10.00       0       \$0       0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0                                                                                                                                                                                                                                                                                                                                                                           | 24       | Spur Dike Stone                                                                                    | CY   | \$70.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 26         Compacted Backfill (Spur Dikes)         CY         \$5.50         0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0                                                                                                                                                                                                                                                                               | 25       | Over-excavation (Spur Dikes)                                                                       | CY   | \$10.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 27       Bank Protection Bedding       CY       \$40.00       0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0                                                                                                                                                                                                                                                                                                                                                                              | 26       | Compacted Backfill (Spur Dikes)                                                                    | CY   | \$5.50      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 28         Bank Protection Riprap         CY         \$70.00         0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0                                                                                                                                                                                                                                                                                       | 27       | Bank Protection Bedding                                                                            | CY   | \$40.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 29       Concrete Sill       CY       \$625.00       0       \$0       0       \$0       0       \$0       0       \$0       0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0       \$0 <td>28</td> <td>Bank Protection Riprap</td> <td>CY</td> <td>\$70.00</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td>                                                                                                                                                                                    | 28       | Bank Protection Riprap                                                                             | CY   | \$70.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 30         Vortex Tube         LF         \$25.00         0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0                                                                                                                                                                                                                                                                                      | 29       | Concrete Sill                                                                                      | CY   | \$625.00    | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 31         Escape Channels         LF         \$35.00         0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0 <td>30</td> <td>Vortex Tube</td> <td>LF</td> <td>\$25.00</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td>                                                                                            | 30       | Vortex Tube                                                                                        | LF   | \$25.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 32         Control Gate         EA         \$2,000.00         0         \$0         0         \$0         0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0                                                                                                                                                                                                                                                                                      | 31       | Escape Channels                                                                                    | LF   | \$35.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 33         12-in CMP Culvert         EA         \$1,50.00         0         \$0         0         \$0         0         \$0         0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0 <td>32</td> <td>Control Gate</td> <td>EA</td> <td>\$2,000.00</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td> <td>0</td> <td>\$0</td>                                                                                          | 32       | Control Gate                                                                                       | EA   | \$2,000.00  | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 34         Eastside Canal Overflow Check and Bypass         EA         \$800,000         0         \$0         0         \$0         0         \$0         0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0<                                                                                                                                                                                                                                                                        | 33       | 12-in CMP Culvert                                                                                  | EA   | \$1,500.00  | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 35         Westside Canal Overflow Check and Bypass         EA         \$1,050,000         0         \$0         0         \$0         0         \$0         0         \$0         0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0                                                                                                                                                                                                                                                                         | 34       | Eastside Canal Overflow Check and Bypass                                                           | EA   | \$800,000   | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
| 36         Mesilla Dam Gate Automation         EA         \$1,000,000         0         \$0         0         \$0         0         \$0         0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0         \$0                                                                                                                                                                                                                                                                                    | 35       | Westside Canal Overflow Check and Bypass                                                           | EA   | \$1,050,000 | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36       | Mesilla Dam Gate Automation                                                                        | EA   | \$1,000,000 | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0          | \$0             | 0                     | \$0                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                                                                                    |      |             |            |                  |             |                  |              |                    |            |                 |                       |                                |  |

| Total Construction Cost per Alternative:   | \$793,004   | \$1,188,484 | \$430,616 | \$465,231 | \$338,940 |
|--------------------------------------------|-------------|-------------|-----------|-----------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$118,951   | \$178,273   | \$64,592  | \$69,785  | \$50,841  |
| Construction Management (CM - 10%)         | \$79,300    | \$118,848   | \$43,062  | \$46,523  | \$33,894  |
| Sub-total Cost (1):                        | \$991,255   | \$1,485,605 | \$538,270 | \$581,538 | \$423,675 |
| Construction Continency (30%):             | \$237,901   | \$356,545   | \$129,185 | \$139,569 | \$101,682 |
| Total Construction Cost:                   | \$1,229,157 | \$1,842,150 | \$667,455 | \$721,108 | \$525,357 |



PROJECT: Rio Grande Canalization Project - Alternative Cost Estimates DETAIL: Problem Location 2 - Cost and Quantities COMPUTED BY: SKV CHECKED BY: IGP

#### PROBLEM LOCATION 2: SALEM BRIDGE TO PLACITAS ARROYO

PROJECT NO: T33261 DATE: 8/25/2015

|      |             | O&M COSTS BY ALTERNATIVE |                 |             |                  |             |                 |               |                   |             |                  |                        |                              |  |  |  |  |
|------|-------------|--------------------------|-----------------|-------------|------------------|-------------|-----------------|---------------|-------------------|-------------|------------------|------------------------|------------------------------|--|--|--|--|
|      |             |                          |                 |             | S                | ediment Rem | oval Alternativ | es            |                   | No          | n-Sediment Rer   | moval Altern           | atives                       |  |  |  |  |
| Year | O&M Year    | UOM                      | Unit Cost       | Channel Exc | avation (Short)  | Channel Exc | avation (Long)  | Channel Excav | ation (Localized) | Sediment Tr | aps in Arroyos   | Island Des<br>Vegetati | tabilization /<br>on Removal |  |  |  |  |
|      |             |                          |                 | O&M %       | Total Cost       | O&M %       | Total Cost      | O&M %         | Total Cost        | O&M %       | Total Cost       | O&M %                  | Total Cost                   |  |  |  |  |
| 1    | O&M Year 1  | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 2    | O&M Year 2  | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 3    | O&M Year 3  | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 4    | O&M Year 4  | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 25.0%                  | \$84,735                     |  |  |  |  |
| 5    | O&M Year 5  | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 6    | O&M Year 6  | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 30.0%       | \$139,569        | 0.0%                   | \$0                          |  |  |  |  |
| 7    | O&M Year 7  | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 94.0%         | \$404,779         | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 8    | O&M Year 8  | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 25.0%                  | \$84,735                     |  |  |  |  |
| 9    | O&M Year 9  | LS                       | % of Const.     | 99.0%       | \$785,074        | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 10   | O&M Year 10 | LS                       | % of Const.     | 0.0%        | \$U<br>\$0       | 97.0%       | \$1,152,830     | 0.0%          | \$0               | 0.0%        | \$U<br>©0        | 0.0%                   | \$0                          |  |  |  |  |
| 11   | O&M Year 11 | LS                       | % of Const.     | 0.0%        | \$U<br>\$0       | 0.0%        | \$0             | 0.0%          | \$0<br>\$0        | 20.0%       | \$U<br>\$120.560 | 25.0%                  | \$U<br>\$94.725              |  |  |  |  |
| 12   | O&M Year 12 | LS                       | % of Const.     | 0.0%        | \$0<br>\$0       | 0.0%        | \$0<br>\$0      | 0.0%          | \$0<br>\$0        | 0.0%        | \$139,569        | 25.0%                  | \$04,735                     |  |  |  |  |
| 13   | O&M Year 13 | LS                       | % of Const      | 0.0%        | \$0<br>\$0       | 0.0%        | \$0<br>\$0      | 94.0%         | \$404.779         | 0.0%        | \$0<br>\$0       | 0.0%                   | \$0<br>\$0                   |  |  |  |  |
| 14   | O&M Year 14 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0<br>\$0      | 0.0%          | \$0               | 0.0%        | \$0<br>\$0       | 0.0%                   | \$0<br>\$0                   |  |  |  |  |
| 16   | ORM Yoar 16 | 1.9                      | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 25.0%                  | \$84,735                     |  |  |  |  |
| 17   | O&M Year 17 | 1.5                      | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 18   | O&M Year 18 | LS                       | % of Const.     | 99.0%       | \$785,074        | 0.0%        | \$0             | 0.0%          | \$0               | 30.0%       | \$139,569        | 0.0%                   | \$0                          |  |  |  |  |
| 19   | O&M Year 19 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 20   | O&M Year 20 | LS                       | % of Const.     | 0.0%        | \$0              | 97.0%       | \$1,152,830     | 0.0%          | \$0               | 0.0%        | \$0              | 25.0%                  | \$84,735                     |  |  |  |  |
| 21   | O&M Year 21 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 94.0%         | \$404,779         | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 22   | O&M Year 22 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 23   | O&M Year 23 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 24   | O&M Year 24 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 30.0%       | \$139,569        | 25.0%                  | \$84,735                     |  |  |  |  |
| 25   | O&M Year 25 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 26   | O&M Year 26 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 27   | O&M Year 27 | LS                       | % of Const.     | 99.0%       | \$785,074        | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 28   | O&M Year 28 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 94.0%         | \$404,779         | 0.0%        | \$0              | 25.0%                  | \$84,735                     |  |  |  |  |
| 29   | O&M Year 29 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 30   | O&M Year 30 | LS                       | % of Const.     | 0.0%        | \$0              | 97.0%       | \$1,152,830     | 0.0%          | \$0               | 30.0%       | \$139,569        | 0.0%                   | \$0                          |  |  |  |  |
| 31   | O&M Year 31 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 32   | O&M Year 32 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 25.0%                  | \$84,735                     |  |  |  |  |
| 33   | O&M Year 33 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 34   | O&M Year 34 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$U<br>\$0      | 0.0%          | \$0               | 0.0%        | \$U<br>©0        | 0.0%                   | \$0                          |  |  |  |  |
| 35   | O&M Year 35 | LS                       | % of Const.     | 0.0%        | \$U<br>\$795.074 | 0.0%        | \$U<br>\$0      | 94.0%         | \$404,779         | 0.0%        | \$U<br>\$130.560 | 0.0%                   | \$U<br>\$94.725              |  |  |  |  |
| 30   | ORM Year 36 | LS                       | % of Const      | 99.0%       | \$785,074        | 0.0%        | \$0<br>\$0      | 0.0%          | \$0<br>\$0        | 0.0%        | \$139,569        | 25.0%                  | \$04,735                     |  |  |  |  |
| 3/   | ORM Year 37 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0<br>\$0      | 0.0%          | \$0<br>\$0        | 0.0%        | \$0<br>\$0       | 0.0%                   | \$0<br>\$0                   |  |  |  |  |
| 39   | O&M Year 39 | IS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 40   | O&M Year 40 | 1.5                      | % of Const.     | 0.0%        | \$0              | 97.0%       | \$1,152,830     | 0.0%          | \$0               | 0.0%        | \$0              | 25.0%                  | \$84,735                     |  |  |  |  |
| 41   | O&M Year 41 | 1.5                      | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 42   | O&M Year 42 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 94.0%         | \$404,779         | 30.0%       | \$139,569        | 0.0%                   | \$0                          |  |  |  |  |
| 43   | O&M Year 43 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 44   | O&M Year 44 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 25.0%                  | \$84,735                     |  |  |  |  |
| 45   | O&M Year 45 | LS                       | % of Const.     | 99.0%       | \$785,074        | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 46   | O&M Year 46 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 47   | O&M Year 47 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 48   | O&M Year 48 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 0.0%          | \$0               | 30.0%       | \$139,569        | 25.0%                  | \$84,735                     |  |  |  |  |
| 49   | O&M Year 49 | LS                       | % of Const.     | 0.0%        | \$0              | 0.0%        | \$0             | 94.0%         | \$404,779         | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
| 50   | O&M Year 50 | LS                       | % of Const.     | 0.0%        | \$0              | 97.0%       | \$1,152,830     | 0.0%          | \$0               | 0.0%        | \$0              | 0.0%                   | \$0                          |  |  |  |  |
|      |             |                          |                 |             |                  |             |                 |               |                   |             |                  |                        |                              |  |  |  |  |
|      | Total       | O&M Cos                  | t per Location: | \$3,9       | 25,372           | \$5,7       | 64,148          | \$2,8         | 33,456            | \$1,116,554 |                  | \$1,016,819            |                              |  |  |  |  |
|      |             | O&M Cor                  | ntinency (30%): | \$1,1       | 77,611           | \$1,7       | 29,244          | \$85          | 0,037             | \$33        | 34,966           | \$30                   | 15,046                       |  |  |  |  |
|      |             | Total Con                | struction Cost: | \$5,1       | 02,983           | \$7,4       | 93,393          | \$3,6         | 83,492            | \$1,4       | 51,520           | \$1,3                  | 21,865                       |  |  |  |  |



#### PROBLEM LOCATION 3: RINCON SIPHON A RESTORATION SITE TO RINCON SIPHON

| Page | 1 of | 2 |
|------|------|---|

|          |                                                     |        |             | CONSTRUCT  | TION COSTS BY    | ALTERNAT    | IVE              |                                |            |                           |                |                                     |            |
|----------|-----------------------------------------------------|--------|-------------|------------|------------------|-------------|------------------|--------------------------------|------------|---------------------------|----------------|-------------------------------------|------------|
|          |                                                     |        |             |            | S                | ediment Ren | noval Alternativ | es                             |            | No                        | n-Sediment Rei | noval Altern                        | atives     |
| Item No. | Item Description                                    | UOM    | Unit Cost   | Channel Ex | cavation (Short) | Channel Ex  | cavation (Long)  | Channel Excavation (Localized) |            | Sediment Traps in Arroyos |                | Replace Rincon Siphon with<br>Flume |            |
|          |                                                     |        |             | Quant.     | Total Cost       | Quant.      | Total Cost       | Quant.                         | Total Cost | Quant.                    | Total Cost     | Quant.                              | Total Cost |
| 1        | Mobilization / Demobilization                       | LS     | 12.50%      | 1          | \$17,623         | 1           | \$37,195         | 1                              | \$11,488   | 1                         | \$10,844       | 1                                   | \$139,511  |
| 2        | Site Access and Staging                             | LS     | 2.50%       | 1          | \$3,525          | 1           | \$7,439          | 1                              | \$2,298    | 1                         | \$2,169        | 1                                   | \$27,902   |
| 3        | Clearing and Grubbing                               | ACRE   | \$2,000.00  | 1.2        | \$2,360          | 2.4         | \$4,780          | 0.4                            | \$700      | 0.6                       | \$1,200        | 0.5                                 | \$1,000    |
| 4        | Excavation (Sediment Removal)                       | CY     | \$2.75      | 17,220     | \$47,355         | 36,370      | \$100,018        | 11,330                         | \$31,158   | 0                         | \$0            | 0                                   | \$0        |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY     | \$3.80      | 17,220     | \$65,436         | 36,370      | \$138,206        | 11,330                         | \$43,054   | 0                         | \$0            | 0                                   | \$0        |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY     | \$1.50      | 17,220     | \$25,830         | 36,370      | \$54,555         | 11,330                         | \$16,995   | 0                         | \$0            | 0                                   | \$0        |
| 7        | Excavation (Sediment Traps)                         | CY     | \$4.25      | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 2,765                     | \$11,751       | 0                                   | \$0        |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF     | \$50.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF     | \$75.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 95                        | \$7,125        | 0                                   | \$0        |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF     | \$85.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 140                       | \$11,900       | 0                                   | \$0        |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF     | \$30.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 110                       | \$3,300        | 0                                   | \$0        |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF     | \$55.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 45                        | \$2,475        | 0                                   | \$0        |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF     | \$70.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY     | \$3.50      | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY     | \$15.25     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 16       | Pilot Channel Excavation                            | CY     | \$6.50      | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 17       | Maintenance Road                                    | SF     | \$2.00      | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 4,500                     | \$9,000        | 0                                   | \$0        |
| 18       | Debris Rack                                         | EA     | \$40,000.00 | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 1                         | \$40,000       | 0                                   | \$0        |
| 19       | Structural Excavation                               | CY     | \$10.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 3,000                               | \$30,000   |
| 20       | Rock Removal                                        | CY     | \$20.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 12,370                              | \$247,400  |
| 21       | Sheet Pile Wall Demolition                          | LF     | \$100.00    | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 1,675                               | \$167,500  |
| 22       | Demo Existing Siphon                                | LF     | \$52.50     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 575                                 | \$30,188   |
| 23       | Reinforced Concrete Box                             | CY     | \$800.00    | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 800                                 | \$640,000  |
| 24       | Spur Dike Stone                                     | CY     | \$70.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 25       | Over-excavation (Spur Dikes)                        | CY     | \$10.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 26       | Compacted Backfill (Spur Dikes)                     | CY     | \$5.50      | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 27       | Bank Protection Bedding                             | CY     | \$40.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 28       | Bank Protection Riprap                              | CY     | \$70.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 29       | Concrete Sill                                       | CY     | \$625.00    | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 30       | Vortex Tube                                         | LF     | \$25.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 31       | Escape Channels                                     | LF     | \$35.00     | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 32       | Control Gate                                        | EA     | \$2,000.00  | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 33       | 12-in CMP Culvert                                   | EA     | \$1,500.00  | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 34       | Eastside Canal Overflow Check and Bypass            | EA     | \$800,000   | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 35       | Westside Canal Overflow Check and Bypass            | EA     | \$1,050,000 | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
| 36       | Mesilla Dam Gate Automation                         | EA     | \$1,000,000 | 0          | \$0              | 0           | \$0              | 0                              | \$0        | 0                         | \$0            | 0                                   | \$0        |
|          |                                                     |        |             |            |                  |             |                  |                                |            |                           |                |                                     |            |
|          | T-t-L C                                             | 10 400 | C 4 (       | 05 000     | ¢0               | 0.704       | 64.0             | 00 504                         |            |                           |                |                                     |            |

| Total Construction Cost per Alternative:   | \$162,128 | \$342,192 | \$105,692 | \$99,764  | \$1,283,501 |
|--------------------------------------------|-----------|-----------|-----------|-----------|-------------|
| Planning, Engineering & Design (PED - 15%) | \$24,319  | \$51,329  | \$15,854  | \$14,965  | \$192,525   |
| Construction Management (CM - 10%)         | \$16,213  | \$34,219  | \$10,569  | \$9,976   | \$128,350   |
| Sub-total Cost (1):                        | \$202,660 | \$427,740 | \$132,116 | \$124,705 | \$1,604,376 |
| Construction Continency (30%):             | \$48,638  | \$102,658 | \$31,708  | \$29,929  | \$385,050   |
| Total Construction Cost:                   | \$251,299 | \$530,398 | \$163,823 | \$154,634 | \$1,989,426 |



Page 2 of 2

|      |               | O&M COSTS BY ALTERNATIVE          |                |               |                                      |             |                 |               |                    |                           |               |                                            |            |  |  |  |  |
|------|---------------|-----------------------------------|----------------|---------------|--------------------------------------|-------------|-----------------|---------------|--------------------|---------------------------|---------------|--------------------------------------------|------------|--|--|--|--|
|      |               |                                   |                |               | S                                    | ediment Rem | oval Alternativ | es            |                    | No                        | n-Sediment Re | noval Altern                               | atives     |  |  |  |  |
| Year | O&M Year      | UOM                               | Unit Cost      | Channel Exc   | cavation (Short)                     | Channel Exc | avation (Long)  | Channel Excav | vation (Localized) | Sediment Traps in Arroyos |               | Replace Rincon Siphon with<br>Flume        |            |  |  |  |  |
|      |               |                                   |                | O&M %         | Total Cost                           | O&M %       | Total Cost      | O&M %         | Total Cost         | O&M %                     | Total Cost    | O&M %                                      | Total Cost |  |  |  |  |
| 1    | O&M Year 1    | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 2    | O&M Year 2    | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 3    | O&M Year 3    | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 4    | O&M Year 4    | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 11.7%                     | \$11,672      | 0.0%                                       | \$0        |  |  |  |  |
| 5    | O&M Year 5    | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 6    | O&M Year 6    | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 7    | O&M Year 7    | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 94.0%         | \$99,351           | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 8    | O&M Year 8    | LS                                | % of Const.    | 91.0%         | \$147,537                            | 0.0%        | \$0             | 0.0%          | \$0                | 11.7%                     | \$11,672      | 5.0%                                       | \$64,175   |  |  |  |  |
| 9    | O&M Year 9    | LS                                | % of Const.    | 0.0%          | \$0                                  | 93.0%       | \$318,239       | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 10   | O&M Year 10   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 11   | O&M Year 11   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 12   | O&M Year 12   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 11.7%                     | \$11,672      | 0.0%                                       | \$0        |  |  |  |  |
| 13   | O&M Year 13   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 14   | O&M Year 14   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 94.0%         | \$99,351           | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 15   | O&M Year 15   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 16   | O&M Year 16   | LS                                | % of Const.    | 91.0%         | \$147,537                            | 0.0%        | \$0             | 0.0%          | \$0                | 11.7%                     | \$11,672      | 0.0%                                       | \$0        |  |  |  |  |
| 17   | O&M Year 17   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 18   | O&M Year 18   | LS                                | % of Const.    | 0.0%          | \$0                                  | 93.0%       | \$318,239       | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 19   | O&M Year 19   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 20   | O&M Year 20   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 11.7%                     | \$11,672      | 5.0%                                       | \$64,175   |  |  |  |  |
| 21   | O&M Year 21   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 94.0%         | \$99,351           | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 22   | O&M Year 22   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 23   | O&M Year 23   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 24   | O&M Year 24   | LS                                | % of Const.    | 91.0%         | \$147,537                            | 0.0%        | \$0             | 0.0%          | \$0                | 11.7%                     | \$11,672      | 0.0%                                       | \$0        |  |  |  |  |
| 25   | O&M Year 25   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 26   | O&M Year 26   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 27   | O&M Year 27   | LS                                | % of Const.    | 0.0%          | \$0                                  | 93.0%       | \$318,239       | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 28   | O&M Year 28   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 94.0%         | \$99,351           | 11.7%                     | \$11,672      | 0.0%                                       | \$0        |  |  |  |  |
| 29   | O&M Year 29   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 30   | O&M Year 30   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 5.0%                                       | \$64,175   |  |  |  |  |
| 31   | O&M Year 31   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 32   | O&M Year 32   | LS                                | % of Const.    | 91.0%         | \$147,537                            | 0.0%        | \$0             | 0.0%          | \$0                | 11.7%                     | \$11,672      | 0.0%                                       | \$0        |  |  |  |  |
| 33   | O&M Year 33   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 34   | O&M Year 34   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 35   | O&M Year 35   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 94.0%         | \$99,351           | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 36   | O&M Year 36   | LS                                | % of Const.    | 0.0%          | \$0                                  | 93.0%       | \$318,239       | 0.0%          | \$0                | 11.7%                     | \$11,672      | 0.0%                                       | \$0        |  |  |  |  |
| 37   | O&M Year 37   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 38   | O&M Year 38   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 39   | Q&M Year 39   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 40   | O&M Year 40   | LS                                | % of Const.    | 91.0%         | \$147,537                            | 0.0%        | \$0             | 0.0%          | \$0                | 11.7%                     | \$11,672      | 5.0%                                       | \$64,175   |  |  |  |  |
| 41   | Q&M Year 41   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 42   | O&M Year 42   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 94.0%         | \$99,351           | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 43   | O&M Year 43   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 44   | Q&M Year 44   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 11.7%                     | \$11.672      | 0.0%                                       | \$0        |  |  |  |  |
| 45   | Q&M Year 45   | LS                                | % of Const.    | 0.0%          | \$0                                  | 93.0%       | \$318,239       | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 46   | Q&M Year 46   | LS                                | % of Const.    | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 47   | Q&M Year 47   | LS                                | % of Const     | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 48   | O&M Year 48   | LS                                | % of Const     | 91.0%         | \$147.537                            | 0.0%        | \$0             | 0.0%          | \$0                | 11.7%                     | \$11.672      | 0.0%                                       | \$0        |  |  |  |  |
| 49   | O&M Year 49   | 15                                | % of Const     | 0.0%          | \$0                                  | 0.0%        | \$0             | 94.0%         | \$99.351           | 0.0%                      | \$0           | 0.0%                                       | \$0        |  |  |  |  |
| 40   | O&M Year 50   | 19                                | % of Const     | 0.0%          | \$0                                  | 0.0%        | \$0             | 0.0%          | \$0                | 0.0%                      | \$0           | 5.0%                                       | \$64 175   |  |  |  |  |
| 50   | Call I Cal Co |                                   |                | 0.070         | Ψ0                                   | 0.070       | ΨΟ              | 0.070         | ΨŬ                 | 0.070                     | ΨŬ            | 0.070 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |            |  |  |  |  |
|      | Tota          |                                   | t per Location | \$92          | 35 220                               | \$1 5       | 91 194          | 292           | 5 456              | ¢1/                       | 0.069         | \$23                                       | 20.875     |  |  |  |  |
|      | 1014          | O&M Cor                           | tinency (30%)  | \$00<br>¢04   | 35 566                               | ¢,10<br>¢47 | 7 358           | \$08<br>¢00   | 18 637             | \$42,021                  |               | \$320,875                                  |            |  |  |  |  |
|      |               | Total Com                         | struction Cost | \$20<br>\$1.4 | 150 786                              | ¢4/<br>¢20  | 68 552          | \$20<br>¢or   | 4 093              | \$4<br>¢10                | 2 089         | ¢9                                         | 17 138     |  |  |  |  |
|      |               | Total Construction Cost: \$1,150, |                |               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 2,0پ        |                 | વગ            | .,                 | φic                       | -,            | 44                                         | ,100       |  |  |  |  |



PROJECT: Rio Grande Canalization Project - Alternative Cost Estimates DETAIL: Problem Location 4 - Cost and Quantities COMPUTED BY: SKV CHECKED BY: IGP

PROBLEM LOCATION 4: RINCON ARROYO TO BIGNELL ARROYO

PROJECT NO: T33261 DATE: 8/25/2015

Page 1 of 2

|                                                                   |                                                     |      |             | CONSTRUCT  | TION COSTS BY    |             | VE               |              |                   |                                        | 0 1 10         |                          |            |
|-------------------------------------------------------------------|-----------------------------------------------------|------|-------------|------------|------------------|-------------|------------------|--------------|-------------------|----------------------------------------|----------------|--------------------------|------------|
|                                                                   |                                                     |      |             |            | 5                | eaiment Kem | ioval Alternativ | es           |                   | NO                                     | n-Sediment Ker | emoval Alternatives      |            |
| Item No.                                                          | Item Description                                    | UOM  | Unit Cost   | Channel Ex | cavation (Short) | Channel Exc | avation (Long)   | Channel Exca | ation (Localized) | Island Destabilization / Spur<br>Dikes |                | Low-Elevation Spur Dikes |            |
|                                                                   |                                                     |      |             | Quant.     | Total Cost       | Quant.      | Total Cost       | Quant.       | Total Cost        | Quant.                                 | Total Cost     | Quant.                   | Total Cost |
| 1                                                                 | Mobilization / Demobilization                       | LS   | 12.50%      | 1          | \$66,068         | 1           | \$224,365        | 1            | \$38,485          | 1                                      | \$46,609       | 1                        | \$40,631   |
| 2                                                                 | Site Access and Staging                             | LS   | 2.50%       | 1          | \$13,214         | 1           | \$44,873         | 1            | \$7,697           | 1                                      | \$9,322        | 1                        | \$8,126    |
| 3                                                                 | Clearing and Grubbing                               | ACRE | \$2,000.00  | 1.5        | \$2,960          | 5.6         | \$11,120         | 0.8          | \$1,660           | 43.9                                   | \$87,800       | 1.0                      | \$2,000    |
| 4                                                                 | Excavation (Sediment Removal)                       | CY   | \$2.75      | 65,290     | \$179,548        | 221,590     | \$609,373        | 38,040       | \$104,610         | 35,413                                 | \$97,385       | 0                        | \$0        |
| 5                                                                 | Load/Haul to Local Disposal Site (Sediment Removal) | CY   | \$3.80      | 65,290     | \$248,102        | 221,590     | \$842,042        | 38,040       | \$144,552         | 35,413                                 | \$134,568      | 0                        | \$0        |
| 6                                                                 | Compacted Fill at Disposal Site (Sediment Removal)  | CY   | \$1.50      | 65,290     | \$97,935         | 221,590     | \$332,385        | 38,040       | \$57,060          | 35,413                                 | \$53,119       | 0                        | \$0        |
| 7                                                                 | Excavation (Sediment Traps)                         | CY   | \$4.25      | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 8                                                                 | 1-ft Rebar Mesh (Sediment Trap)                     | LF   | \$50.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 9                                                                 | 8-in Rebar Mesh (Sediment Trap)                     | LF   | \$75.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 10                                                                | 6-in Rebar Mesh (Sediment Trap)                     | LF   | \$85.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 11                                                                | 4-in Wire Mesh (Sediment Trap)                      | LF   | \$30.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 12                                                                | 2-in Wire Mesh (Sediment Trap) LF \$55.00           |      | \$55.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 13                                                                | 1-in Wire Mesh (Sediment Trap)                      | LF   | \$70.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 14                                                                | Compacted Fill (Sediment Trap Berm)                 | CY   | \$3.50      | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 15                                                                | Rock Slope Protection (Sediment Trap Berm)          | CY   | \$15.25     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 16                                                                | Pilot Channel Excavation                            | CY   | \$6.50      | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 17                                                                | Maintenance Road                                    | SF   | \$2.00      | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 18                                                                | Debris Rack                                         | EA   | \$40,000.00 | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 19                                                                | Structural Excavation                               | CY   | \$10.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 20                                                                | Rock Removal                                        | CY   | \$20.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 21                                                                | Sheet Pile Wall Demolition                          | LF   | \$100.00    | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 22                                                                | Demo Existing Siphon                                | LF   | \$52.50     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 23                                                                | Reinforced Concrete Box                             | CY   | \$800.00    | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 24                                                                | Spur Dike Stone                                     | CY   | \$70.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 4,245                    | \$297,150  |
| 25                                                                | Over-excavation (Spur Dikes)                        | CY   | \$10.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 2,123                    | \$21,230   |
| 26                                                                | Compacted Backfill (Spur Dikes)                     | CY   | \$5.50      | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 849                      | \$4,670    |
| 27                                                                | Bank Protection Bedding                             | CY   | \$40.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 28                                                                | Bank Protection Riprap                              | CY   | \$70.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 29                                                                | Concrete Sill                                       | CY   | \$625.00    | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 30                                                                | Vortex Tube                                         | LF   | \$25.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 31                                                                | Escape Channels                                     | LF   | \$35.00     | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 32                                                                | Control Gate                                        | EA   | \$2,000.00  | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 33                                                                | 12-in CMP Culvert                                   | EA   | \$1,500.00  | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 34                                                                | Eastside Canal Overflow Check and Bypass            | EA   | \$800,000   | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 35                                                                | Westside Canal Overflow Check and Bypass            | EA   | \$1,050,000 | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            | 0                        | \$0        |
| 36                                                                | Mesilla Dam Gate Automation                         | 0    | \$0         | 0          | \$0              | 0           | \$0              | 0            | \$0               | 0                                      | \$0            |                          |            |
|                                                                   |                                                     |      |             |            |                  |             |                  |              |                   |                                        |                |                          |            |
| Total Construction Cost par Alternative \$607.976 \$3.064.457 \$3 |                                                     |      |             |            |                  |             |                  |              |                   |                                        | 00 000         | \$27                     | 72 907     |

| Total Construction Cost per Alternative:   | \$607,826 | \$2,064,157 | \$354,064 | \$428,803 | \$373,807 |
|--------------------------------------------|-----------|-------------|-----------|-----------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$91,174  | \$309,624   | \$53,110  | \$64,320  | \$56,071  |
| Construction Management (CM - 10%)         | \$60,783  | \$206,416   | \$35,406  | \$42,880  | \$37,381  |
| Sub-total Cost (1):                        | \$759,783 | \$2,580,197 | \$442,580 | \$536,003 | \$467,259 |
| Construction Continency (30%):             | \$182,348 | \$619,247   | \$106,219 | \$128,641 | \$112,142 |
| Total Construction Cost:                   | \$942,131 | \$3,199,444 | \$548,800 | \$664,644 | \$579,401 |
|                                            |           |             |           |           |           |



PROJECT: **Rio Grande Canalization Project - Alternative Cost Estimates** DETAIL: *Problem Location 4 - Cost and Quantities* COMPUTED BY: SKV CHECKED BY: IGP

PROBLEM LOCATION 4: RINCON ARROYO TO BIGNELL ARROYO

Page 2 of 2

|      |                                   |                                          | O&M COSTS BY ALTERNATIVE<br>Sediment Removal Alternatives |             |                       |                      |                    |                   |                   |       | Non-Sediment Removal Alternatives |                          |                 |  |  |  |
|------|-----------------------------------|------------------------------------------|-----------------------------------------------------------|-------------|-----------------------|----------------------|--------------------|-------------------|-------------------|-------|-----------------------------------|--------------------------|-----------------|--|--|--|
|      |                                   |                                          |                                                           |             | 5                     | eaiment Ken          | ioval Alternativ   | es                |                   | NO    | n-Sealment Ker                    | temoval Alternatives     |                 |  |  |  |
| Year | O&M Year                          | UOM                                      | Unit Cost                                                 | Channel Exc | avation (Short)       | Channel Exe          | cavation (Long)    | Channel Excav     | ation (Localized) | Dikes |                                   | Low-Elevation Spur Dikes |                 |  |  |  |
|      |                                   |                                          |                                                           | O&M %       | Total Cost            | O&M %                | Total Cost         | O&M %             | Total Cost        | O&M % | Total Cost                        | 0&M %                    | Total Cost      |  |  |  |
| 1    | O&M Year 1                        | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 2    | O&M Year 2                        | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$0                | 75.0%             | \$265,548         | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 3    | O&M Year 3                        | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 4    | O&M Year 4                        | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$U<br>\$0         | 75.0%             | \$265,548         | 25.0% | \$107,201                         | 15.0%                    | \$U<br>\$E6.071 |  |  |  |
| 5    | O&M Year 5                        | LS                                       | % of Const.                                               | 75.0%       | ΦU<br>© 455 970       | 0.0%                 | \$0<br>\$0         | 75.09/            | \$0<br>€265 E49   | 0.0%  | \$U<br>\$0                        | 15.0%                    | \$36,071        |  |  |  |
| 6    | O&M Year 5                        | LS                                       | % of Const                                                | 0.0%        | \$455,870             | 0.0%                 | \$0<br>\$0         | 0.0%              | \$205,546         | 0.0%  | \$0<br>\$0                        | 0.0%                     | \$0<br>\$0      |  |  |  |
| 0    | ORM Year P                        | 1.0                                      | % of Const                                                | 75.0%       | \$455.870             | 0.0%                 | \$0                | 75.0%             | \$265 548         | 25.0% | \$107.201                         | 0.0%                     | \$0             |  |  |  |
| 0    | O&M Year 9                        | 1.9                                      | % of Const.                                               | 0.0%        | \$0                   | 93.0%                | \$1 919 666        | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 10   | O&M Year 10                       | 15                                       | % of Const.                                               | 75.0%       | \$455.870             | 0.0%                 | \$0                | 75.0%             | \$265.548         | 0.0%  | \$0                               | 25.0%                    | \$93.452        |  |  |  |
| 10   | O&M Year 11                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 12   | O&M Year 12                       | 1.5                                      | % of Const.                                               | 75.0%       | \$455.870             | 0.0%                 | \$0                | 75.0%             | \$265.548         | 25.0% | \$107.201                         | 0.0%                     | \$0             |  |  |  |
| 13   | O&M Year 13                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 14   | O&M Year 14                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$0                | 75.0%             | \$265,548         | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 15   | O&M Year 15                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 15.0%                    | \$56,071        |  |  |  |
| 16   | O&M Year 16                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$0                | 75.0%             | \$265,548         | 25.0% | \$107,201                         | 0.0%                     | \$0             |  |  |  |
| 17   | O&M Year 17                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 18   | O&M Year 18                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 93.0%                | \$1,919,666        | 75.0%             | \$265,548         | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 19   | O&M Year 19                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 20   | O&M Year 20                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$0                | 75.0%             | \$265,548         | 25.0% | \$107,201                         | 25.0%                    | \$93,452        |  |  |  |
| 21   | O&M Year 21                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 22   | O&M Year 22                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$0                | 75.0%             | \$265,548         | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 23   | O&M Year 23                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 24   | O&M Year 24                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$0                | 75.0%             | \$265,548         | 25.0% | \$107,201                         | 0.0%                     | \$0             |  |  |  |
| 25   | O&M Year 25                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 15.0%                    | \$56,071        |  |  |  |
| 26   | O&M Year 26                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$U<br>\$1.010.666 | 75.0%             | \$265,548         | 0.0%  | \$U<br>©0                         | 0.0%                     | \$0             |  |  |  |
| 27   | O&M Year 28                       | LS                                       | % of Const                                                | 75.0%       | φU<br>\$455.870       | 93.0%                | \$1,919,000        | 75.0%             | \$265 548         | 25.0% | \$U<br>\$107.201                  | 0.0%                     | \$0<br>\$0      |  |  |  |
| 20   | O&M Voar 20                       | 1.9                                      | % of Const                                                | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 30   | O&M Year 30                       | 15                                       | % of Const.                                               | 75.0%       | \$455.870             | 0.0%                 | \$0                | 75.0%             | \$265.548         | 0.0%  | \$0                               | 25.0%                    | \$93.452        |  |  |  |
| 31   | O&M Year 31                       | 1.5                                      | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 32   | Q&M Year 32                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$0                | 75.0%             | \$265,548         | 25.0% | \$107,201                         | 0.0%                     | \$0             |  |  |  |
| 33   | O&M Year 33                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 34   | O&M Year 34                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$0                | 75.0%             | \$265,548         | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 35   | O&M Year 35                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 15.0%                    | \$56,071        |  |  |  |
| 36   | O&M Year 36                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 93.0%                | \$1,919,666        | 75.0%             | \$265,548         | 25.0% | \$107,201                         | 0.0%                     | \$0             |  |  |  |
| 37   | O&M Year 37                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 38   | O&M Year 38                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$0                | 75.0%             | \$265,548         | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 39   | O&M Year 39                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 40   | O&M Year 40                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$0                | 75.0%             | \$265,548         | 25.0% | \$107,201                         | 25.0%                    | \$93,452        |  |  |  |
| 41   | O&M Year 41                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 42   | O&M Year 42                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$0                | 75.0%             | \$265,548         | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 43   | O&M Year 43                       | LS                                       | % of Const.                                               | 0.0%        | \$0                   | 0.0%                 | \$0                | 0.0%              | \$0               | 0.0%  | \$0                               | 0.0%                     | \$0             |  |  |  |
| 44   | O&M Year 44                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$0                | 75.0%             | \$265,548         | 25.0% | \$107,201                         | 0.0%                     | \$0             |  |  |  |
| 45   | U&M Year 45                       | LS                                       | % of Const.                                               | 0.0%        | \$U<br>\$455.070      | 93.0%                | \$1,919,666<br>¢0  | 0.0%              | \$U<br>\$065.540  | 0.0%  | \$U<br>©                          | 15.0%                    | \$56,071        |  |  |  |
| 46   | U&M Year 46                       | LS                                       | % of Const.                                               | 75.0%       | \$455,870             | 0.0%                 | \$U<br>\$0         | 75.0%             | \$265,548<br>¢0   | 0.0%  | \$U<br>\$0                        | 0.0%                     | \$U<br>\$0      |  |  |  |
| 47   | Okivi rear 4/                     | LS                                       | % of Const.                                               | 75.0%       | ΦU<br>\$455.970       | 0.0%                 | φ0<br>\$0          | 75.0%             | \$0<br>\$265.549  | 0.0%  |                                   | 0.0%                     | \$0             |  |  |  |
| 48   | ORM Voor 40                       | 1.5                                      | % of Const.                                               | 0.0%        | \$400,870<br>\$0      | 0.0%                 | φU<br>\$0          | 0.0%              | ¢200,548<br>\$0   | 23.0% | \$0,201                           | 0.0%                     | \$0<br>\$0      |  |  |  |
| 49   | O&M Vear 50                       | 15                                       | % of Const                                                | 75.0%       | \$455.870             | 0.0%                 | \$0<br>\$0         | 75.0%             | \$265.548         | 0.0%  | \$0                               | 25.0%                    | \$93.452        |  |  |  |
| JU   | Com rodi JU                       | 1 10                                     | 70 01 COTISE.                                             | 10.070      | 9 <del>1</del> 00,070 | 0.070                | ΨU                 | /5.0% \$265,548   |                   | 0.070 | ΨU                                | 20.070                   | 400,40Z         |  |  |  |
|      | Tota                              | Total O&M Cost per Location \$11,396,7/1 |                                                           |             |                       | 41 \$9 598 332       |                    | \$6,638,706       |                   | \$1.2 | 86.408                            | \$74                     | 17.614          |  |  |  |
|      | O&M Continency (30%): \$3.419.022 |                                          |                                                           |             |                       | ,419,022 \$2,879,500 |                    | 9,500 \$1,991,612 |                   | \$38  | 35,922                            | \$22                     | 24,284          |  |  |  |
|      |                                   | Total Con                                | struction Cost:                                           | \$14,       | 815,763               | \$12,                | 477,832            | \$8,6             | 30,317            | \$1,6 | 572,331                           | \$971,898                |                 |  |  |  |



PROJECT: **Rio Grande Canalization Project - Alternative Cost Estimates** DETAIL: *Problem Location 5 - Cost and Quantities* COMPUTED BY: SKV CHECKED BY: IGP PROJECT NO: T33261 DATE: 8/25/2015

| Page | 1 | of 2 |
|------|---|------|

|          |                                                     | CONSTRUCTION COSTS BY ALTERNATIVE |             |             |                 |             |                 |              |                    |             |                |                         |            |
|----------|-----------------------------------------------------|-----------------------------------|-------------|-------------|-----------------|-------------|-----------------|--------------|--------------------|-------------|----------------|-------------------------|------------|
|          |                                                     |                                   |             |             | S               | ediment Rem | oval Alternativ | es           |                    | No          | n-Sediment Rei | noval Altern            | atives     |
| Item No. | Item Description                                    | UOM                               | Unit Cost   | Channel Exc | avation (Short) | Channel Exc | avation (Long)  | Channel Exca | vation (Localized) | Sediment Tr | aps in Arroyos | Low-Elevation Spur Dike |            |
|          |                                                     |                                   |             | Quant.      | Total Cost      | Quant.      | Total Cost      | Quant.       | Total Cost         | Quant.      | Total Cost     | Quant.                  | Total Cost |
| 1        | Mobilization / Demobilization                       | LS                                | 12.50%      | 1           | \$101,873       | 1           | \$224,622       | 1            | \$72,138           | 1           | \$31,234       | 1                       | \$62,711   |
| 2        | Site Access and Staging                             | LS                                | 2.50%       | 1           | \$20,375        | 1           | \$44,924        | 1            | \$14,428           | 1           | \$6,247        | 1                       | \$12,542   |
| 3        | Clearing and Grubbing                               | ACRE                              | \$2,000.00  | 1.3         | \$2,580         | 5.4         | \$10,840        | 1.8          | \$3,620            | 2.9         | \$5,800        | 1.5                     | \$3,000    |
| 4        | Excavation (Sediment Removal)                       | CY                                | \$2.75      | 100,920     | \$277,530       | 221,880     | \$610,170       | 71,240       | \$195,910          | 0           | \$0            | 0                       | \$0        |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY                                | \$3.80      | 100,920     | \$383,496       | 221,880     | \$843,144       | 71,240       | \$270,712          | 0           | \$0            | 0                       | \$0        |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY                                | \$1.50      | 100,920     | \$151,380       | 221,880     | \$332,820       | 71,240       | \$106,860          | 0           | \$0            | 0                       | \$0        |
| 7        | Excavation (Sediment Traps)                         | CY                                | \$4.25      | 0           | \$0             | 0           | \$0             | 0            | \$0                | 14,162      | \$60,189       | 0                       | \$0        |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF                                | \$50.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 150         | \$7,500        | 0                       | \$0        |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF                                | \$75.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 245         | \$18,375       | 0                       | \$0        |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF                                | \$85.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 250         | \$21,250       | 0                       | \$0        |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF                                | \$30.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 210         | \$6,300        | 0                       | \$0        |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF                                | \$55.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 175         | \$9,625        | 0                       | \$0        |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF                                | \$70.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY                                | \$3.50      | 0           | \$0             | 0           | \$0             | 0            | \$0                | 860         | \$3,010        | 0                       | \$0        |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY                                | \$15.25     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 100         | \$1,525        | 0                       | \$0        |
| 16       | Pilot Channel Excavation                            | CY                                | \$6.50      | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 17       | Maintenance Road                                    | SF                                | \$2.00      | 0           | \$0             | 0           | \$0             | 0            | \$0                | 18,150      | \$36,300       | 0                       | \$0        |
| 18       | Debris Rack                                         | EA                                | \$40,000.00 | 0           | \$0             | 0           | \$0             | 0            | \$0                | 2           | \$80,000       | 0                       | \$0        |
| 19       | Structural Excavation                               | CY                                | \$10.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 20       | Rock Removal                                        | CY                                | \$20.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 21       | Sheet Pile Wall Demolition                          | LF                                | \$100.00    | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 22       | Demo Existing Siphon                                | LF                                | \$52.50     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 23       | Reinforced Concrete Box                             | CY                                | \$800.00    | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 24       | Spur Dike Stone                                     | CY                                | \$70.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 6,553                   | \$458,710  |
| 25       | Over-excavation (Spur Dikes)                        | CY                                | \$10.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 3,277                   | \$32,770   |
| 26       | Compacted Backfill (Spur Dikes)                     | CY                                | \$5.50      | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 1,311                   | \$7,211    |
| 27       | Bank Protection Bedding                             | CY                                | \$40.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 28       | Bank Protection Riprap                              | CY                                | \$70.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 29       | Concrete Sill                                       | CY                                | \$625.00    | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 30       | Vortex Tube                                         | LF                                | \$25.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 31       | Escape Channels                                     | LF                                | \$35.00     | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 32       | Control Gate                                        | EA                                | \$2,000.00  | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 33       | 12-in CMP Culvert                                   | EA                                | \$1,500.00  | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 34       | Eastside Canal Overflow Check and Bypass            | EA                                | \$800,000   | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 35       | Westside Canal Overflow Check and Bypass            | EA                                | \$1,050,000 | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
| 36       | Mesilla Dam Gate Automation                         | EA                                | \$1,000,000 | 0           | \$0             | 0           | \$0             | 0            | \$0                | 0           | \$0            | 0                       | \$0        |
|          |                                                     |                                   |             |             |                 |             |                 |              |                    |             |                |                         |            |

| Total Construction Cost per Alternative:   | \$937,234   | \$2,066,520 | \$663,667   | \$287,355 | \$576,944 |
|--------------------------------------------|-------------|-------------|-------------|-----------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$140,585   | \$309,978   | \$99,550    | \$43,103  | \$86,542  |
| Construction Management (CM - 10%)         | \$93,723    | \$206,652   | \$66,367    | \$28,735  | \$57,694  |
| Sub-total Cost (1):                        | \$1,171,542 | \$2,583,150 | \$829,584   | \$359,193 | \$721,180 |
| Construction Continency (30%):             | \$281,170   | \$619,956   | \$199,100   | \$86,206  | \$173,083 |
| Total Construction Cost:                   | \$1,452,713 | \$3,203,106 | \$1,028,684 | \$445,400 | \$894,263 |



PROJECT: Rio Grande Canalization Project - Alternative Cost Estimates DETAIL: Problem Location 5 - Cost and Quantities COMPUTED BY: SKV CHECKED BY: IGP

| _    |     |   |    |   |
|------|-----|---|----|---|
| - Pa | aae | 2 | of | 2 |

|          |                        |           | O&M C           | OSTS BY ALTE  | RNATIVE          |              |                  |               |                    |                                   |                      |                          |                  |  |
|----------|------------------------|-----------|-----------------|---------------|------------------|--------------|------------------|---------------|--------------------|-----------------------------------|----------------------|--------------------------|------------------|--|
|          |                        |           |                 |               | S                | ediment Ren  | noval Alternativ | es            |                    | Non-Sediment Removal Alternatives |                      |                          |                  |  |
| Year     | O&M Year               | UOM       | Unit Cost       | Channel Exc   | avation (Short)  | Channel Ex   | cavation (Long)  | Channel Excav | vation (Localized) | Sediment Traps in Arroyos         |                      | Low-Elevation Spur Dikes |                  |  |
|          |                        |           |                 | O&M %         | Total Cost       | O&M %        | Total Cost       | O&M %         | Total Cost         | O&M %                             | Total Cost           | O&M %                    | Total Cost       |  |
| 1        | O&M Year 1             | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 2        | O&M Year 2             | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 3        | O&M Year 3             | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 4        | O&M Year 4             | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 5        | O&M Year 5             | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 15.0%                    | \$86,542         |  |
| 6        | O&M Year 6             | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 7        | O&M Year 7             | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 8        | O&M Year 8             | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 9        | O&M Year 9             | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 10       | O&M Year 10            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 92.0%         | \$610,574          | 20.7%                             | \$59,482             | 25.0%                    | \$144,236        |  |
| 11       | O&M Year 11            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 12       | O&M Year 12            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 13       | O&M Year 13            | LS        | % of Const.     | 95.0%         | \$890,372        | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 14       | O&M Year 14            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 15       | O&M Year 15            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 15.0%                    | \$86,542         |  |
| 16       | O&M Year 16            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 17       | O&M Year 17            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 18       | O&M Year 18            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 19       | O&M Year 19            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 20       | O&M Year 20            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 92.0%         | \$610,574          | 20.7%                             | \$59,482             | 25.0%                    | \$144,236        |  |
| 21       | O&M Year 21            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 22       | O&M Year 22            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 23       | O&M Year 23            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 24       | O&M Year 24            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 25       | O&M Year 25            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 15.0%                    | \$86,542         |  |
| 26       | O&M Year 26            | LS        | % of Const.     | 95.0%         | \$890,372        | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 27       | O&M Year 27            | LS        | % of Const.     | 0.0%          | \$0              | 98.0%        | \$2,025,190      | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 28       | O&M Year 28            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 29       | O&M Year 29            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 30       | O&M Year 30            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 92.0%         | \$610,574          | 20.7%                             | \$59,482             | 25.0%                    | \$144,236        |  |
| 31       | O&M Year 31            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 32       | O&M Year 32            | LS        | % of Const.     | 0.0%          | \$U              | 0.0%         | \$0              | 0.0%          | \$U<br>\$0         | 0.0%                              | \$U                  | 0.0%                     | \$U<br>\$0       |  |
| 33       | O&M Year 33            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 34       | O&M Year 34            | LS        | % of Const.     | 0.0%          | \$U              | 0.0%         | \$U<br>\$0       | 0.0%          | \$U<br>\$0         | 0.0%                              | \$U                  | 0.0%                     |                  |  |
| 35       | O&M Year 35            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 15.0%                    | \$86,542         |  |
| 36       | O&M Year 36            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 37       | O&M Year 37            | LS        | % of Const.     | 0.0%          | \$0<br>\$0       | 0.0%         | \$0<br>\$0       | 0.0%          | \$U<br>\$0         | 0.0%                              | \$0<br>\$0           | 0.0%                     | \$0<br>\$0       |  |
| 38       | O&M Year 38            | LS        | % of Const.     | 0.0%          | \$U<br>\$900.373 | 0.0%         | \$0<br>\$0       | 0.0%          | \$U<br>\$0         | 0.0%                              | \$U<br>\$0           | 0.0%                     | \$U<br>\$0       |  |
| 39       | O&M Year 39            | LS        | % of Const.     | 95.0%         | \$090,372        | 0.0%         | \$0<br>\$0       | 0.0%          | \$0<br>\$610 F74   | 0.0%                              | \$U<br>\$E0.490      | 0.0%                     | \$U<br>\$144.006 |  |
| 40       | Own Year 40            | LS        | % of Const.     | 0.0%          | \$0<br>\$0       | 0.0%         | \$0<br>\$0       | 92.0%         | \$010,574          | 20.7%                             | \$09,462<br>\$0      | 25.0%                    | \$144,230        |  |
| 41       | O&M Year 42            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0<br>\$0       | 0.0%          | \$0                | 0.0%                              | \$0<br>\$0           | 0.0%                     | \$0              |  |
| 42       | Oam Year 42            | LS        | % of Const.     | 0.0%          | \$0<br>\$0       | 0.0%         | \$0<br>\$0       | 0.0%          | \$0<br>\$0         | 0.0%                              | \$0<br>\$0           | 0.0%                     | \$0<br>\$0       |  |
| 43       | O&M Year 43            | LS        | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0<br>\$0       | 0.0%          | \$0                | 0.0%                              | \$0<br>\$0           | 0.0%                     | \$0              |  |
| 44       | O&M Veer 45            | 1.0       | % of Const      | 0.0%          | \$0              | 0.0%         | \$0<br>\$0       | 0.0%          | \$0                | 0.0%                              | \$0                  | 15.0%                    | \$86 542         |  |
| 43       | O&M Year 46            | 10        | % of Const.     | 0.0%          | \$0<br>\$0       | 0.0%         | 00<br>\$0        | 0.0%          | \$0                | 0.0%                              | \$0<br>\$0           | 0.0%                     | \$0              |  |
| 40       | ORM Voor 47            | 19        | % of Const      | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 47       | 08M Vear 48            | 1.5       | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 40       | ORM Voor 40            | 19        | % of Const      | 0.0%          | \$0              | 0.0%         | \$0              | 0.0%          | \$0                | 0.0%                              | \$0                  | 0.0%                     | \$0              |  |
| 49<br>50 | 08M Vear 50            | 1.5       | % of Const.     | 0.0%          | \$0              | 0.0%         | \$0              | 92.0%         | \$610.574          | 20.7%                             | \$59.482             | 25.0%                    | \$144 236        |  |
| 50       |                        | 10        | ,3 or Const.    | 0.070         | Ψυ               | 0.070        | Ψυ               | 02.070        | 4010,014           | 20.170                            | ψ00, <del>1</del> 02 | 20.070                   | ψ177,200         |  |
|          | Tota                   |           | t per Location  | \$2 A         | 71 117           | \$2.0        | 125 190          | \$3.0         | 52 870             | \$20                              | 7 412                | \$1.1                    | 53 888           |  |
|          | 1014                   | 0&M Co    | tinency (30%)   | \$2,0<br>\$80 | 1 335            | ψ2,0<br>\$6i | 7 557            | ¢0,0<br>¢01   | 5 861              | φ23<br>\$8                        | 9 224                | \$3/                     | 46 166           |  |
|          |                        | Total Con | struction Cost: | \$3.4         | 72,452           | \$2.6        | 32,747           | \$3.9         | 68,730             | \$38                              | 6,636                | \$1.5                    | 500,055          |  |
|          | Total Construction Cos |           |                 |               |                  |              |                  | 1.7           |                    |                                   |                      | 1.1.                     |                  |  |



PROJECT: Rio Grande Canalization Project - Alternative Cost Estimates DETAIL: Problem Location 6 - Cost and Quantities COMPUTED BY: SKV CHECKED BY: IGP

PROBLEM LOCATION 6: PICACHO DRAIN TO BELOW MESILLA DAM

Page 1 of 2

|          | CONSTRUCTION COSTS BY ALTERNATIVE                   |      |             |            |                  |                |                 |                   |                             |             |                 |                              |            |
|----------|-----------------------------------------------------|------|-------------|------------|------------------|----------------|-----------------|-------------------|-----------------------------|-------------|-----------------|------------------------------|------------|
|          |                                                     |      |             | :          | Sediment Remo    | oval Alternati | ves             |                   | Non                         | -Sediment R | emoval Alterna  | tives                        |            |
| Item No. | Item Description                                    | UOM  | Unit Cost   | Channel Ex | cavation (Short) | Channel Ex     | cavation (Long) | New Check/Sl<br>C | uice Structures in<br>anals | Mesilla Dam | Gate Automation | Installation of Vortex Tubes |            |
|          |                                                     |      |             | Quant.     | Total Cost       | Quant.         | Total Cost      | Quant.            | Total Cost                  | Quant.      | Total Cost      | Quant.                       | Total Cost |
| 1        | Mobilization / Demobilization                       | LS   | 12.50%      | 1          | \$36,100         | 1              | \$59,169        | 1                 | \$231,300                   | 1           | \$250,000       | 1                            | \$29,625   |
| 2        | Site Access and Staging                             | LS   | 2.50%       | 1          | \$7,220          | 1              | \$11,834        | 1                 | \$46,260                    | 1           | \$50,000        | 1                            | \$5,925    |
| 3        | Clearing and Grubbing                               | ACRE | \$2,000.00  | 1.4        | \$2,700          | 2.5            | \$5,080         | 0.2               | \$400                       | 0.0         | \$0             | 0.5                          | \$1,000    |
| 4        | Excavation (Sediment Removal)                       | CY   | \$2.75      | 35,540     | \$97,735         | 58,170         | \$159,968       | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY   | \$3.80      | 35,540     | \$135,052        | 58,170         | \$221,046       | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY   | \$1.50      | 35,540     | \$53,310         | 58,170         | \$87,255        | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 7        | Excavation (Sediment Traps)                         | CY   | \$4.25      | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF   | \$50.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF   | \$75.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF   | \$85.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF   | \$30.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF   | \$55.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF   | \$70.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY   | \$3.50      | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY   | \$15.25     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 16       | Pilot Channel Excavation                            | CY   | \$6.50      | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 17       | Maintenance Road                                    | SF   | \$2.00      | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 18       | Debris Rack                                         | EA   | \$40,000.00 | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 19       | Structural Excavation                               | CY   | \$10.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 20       | Rock Removal                                        | CY   | \$20.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 21       | Sheet Pile Wall Demolition                          | LF   | \$100.00    | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 22       | Demo Existing Siphon                                | LF   | \$52.50     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 23       | Reinforced Concrete Box                             | CY   | \$800.00    | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 24       | Spur Dike Stone                                     | CY   | \$70.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 25       | Over-excavation (Spur Dikes)                        | CY   | \$10.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 26       | Compacted Backfill (Spur Dikes)                     | CY   | \$5.50      | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 27       | Bank Protection Bedding                             | CY   | \$40.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 28       | Bank Protection Riprap                              | CY   | \$70.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 0                            | \$0        |
| 29       | Concrete Sill                                       | CY   | \$625.00    | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 300                          | \$187,500  |
| 30       | Vortex Tube                                         | LF   | \$25.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 200                          | \$5,000    |
| 31       | Escape Channels                                     | LF   | \$35.00     | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 800                          | \$28,000   |
| 32       | Control Gate                                        | EA   | \$2,000.00  | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 4                            | \$8,000    |
| 33       | 12-in CMP Culvert                                   | EA   | \$1,500.00  | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 0           | \$0             | 5                            | \$7,500    |
| 34       | Eastside Canal Overflow Check and Bypass            | EA   | \$800,000   | 0          | \$0              | 0              | \$0             | 1                 | \$800,000                   | 0           | \$0             | 0                            | \$0        |
| 35       | Westside Canal Overflow Check and Bypass            | EA   | \$1,050,000 | 0          | \$0              | 0              | \$0             | 1                 | \$1,050,000                 | 0           | \$0             | 0                            | \$0        |
| 36       | Mesilla Dam Gate Automation                         | EA   | \$1,000,000 | 0          | \$0              | 0              | \$0             | 0                 | \$0                         | 2           | \$2,000,000     | 0                            | \$0        |
|          |                                                     |      |             |            |                  |                |                 |                   |                             |             |                 |                              |            |
|          | Total Constant                                      |      |             | ¢0/        | 00 4 4 7         | ¢r.            | 44.054          | ¢0.4              | 07.000                      | ¢o.         | 000 000         | ¢0.                          | 70 5 50    |

| Total Construction Cost per Alternative:   | \$332,117 | \$544,351 | \$2,127,960 | \$2,300,000 | \$272,550 |
|--------------------------------------------|-----------|-----------|-------------|-------------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$49,817  | \$81,653  | \$319,194   | \$345,000   | \$40,883  |
| Construction Management (CM - 10%)         | \$33,212  | \$54,435  | \$212,796   | \$230,000   | \$27,255  |
| Sub-total Cost (1):                        | \$415,146 | \$680,438 | \$2,659,950 | \$2,875,000 | \$340,688 |
| Construction Continency (30%):             | \$99,635  | \$163,305 | \$638,388   | \$690,000   | \$81,765  |
| Total Construction Cost:                   | \$514,781 | \$843,744 | \$3,298,338 | \$3,565,000 | \$422,453 |



PROJECT: **Rio Grande Canalization Project - Alternative Cost Estimates** DETAIL: *Problem Location 6 - Cost and Quantities* COMPUTED BY: SKV CHECKED BY: IGP

PROBLEM LOCATION 6: PICACHO DRAIN TO BELOW MESILLA DAM

Page 2 of 2

|          |             |           |                                    | O&M C                        | OSTS BY ALTE    | RNATIVE        |                |                                   |                             |                             |            |                              |            |  |
|----------|-------------|-----------|------------------------------------|------------------------------|-----------------|----------------|----------------|-----------------------------------|-----------------------------|-----------------------------|------------|------------------------------|------------|--|
|          |             |           |                                    | 5                            | Sediment Remo   | val Alternativ | ves            | Non-Sediment Removal Alternatives |                             |                             |            |                              |            |  |
| Year     | O&M Year    | UOM       | Unit Cost                          | Channel Exc                  | avation (Short) | Channel Exc    | avation (Long) | New Check/Slu<br>Ci               | uice Structures in<br>anals | Mesilla Dam Gate Automation |            | Installation of Vortex Tubes |            |  |
|          |             |           |                                    | O&M %                        | Total Cost      | O&M %          | Total Cost     | O&M %                             | Total Cost                  | O&M %                       | Total Cost | O&M %                        | Total Cost |  |
| 1        | O&M Year 1  | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 2        | O&M Year 2  | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 3        | O&M Year 3  | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 4        | O&M Year 4  | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 5        | O&M Year 5  | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 6        | O&M Year 6  | LS        | % of Const.                        | 142.0%                       | \$471,606       | 90.0%          | \$489,916      | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 7        | O&M Year 7  | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 8        | O&M Year 8  | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 2.5%                              | \$53,199                    | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 9        | O&M Year 9  | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 10       | O&M Year 10 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 2.5%                        | \$57,500   | 10.0%                        | \$27,255   |  |
| 11       | O&M Year 11 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 12       | O&M Year 12 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 90.0%          | \$489,916      | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 13       | O&M Year 13 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 14       | O&M Year 14 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 15       | O&M Year 15 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 16       | O&M Year 16 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 2.5%                              | \$53,199                    | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 17       | O&M Year 17 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 18       | O&M Year 18 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 90.0%          | \$489,916      | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 19       | O&M Year 19 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 20       | O&M Year 20 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 2.5%                        | \$57,500   | 10.0%                        | \$27,255   |  |
| 21       | O&M Year 21 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 22       | O&M Year 22 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 23       | O&M Year 23 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 24       | O&M Year 24 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 90.0%          | \$489,916      | 2.5%                              | \$53,199                    | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 25       | O&M Year 25 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 26       | O&M Year 26 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 27       | O&M Year 27 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 28       | O&M Year 28 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$U            | 0.0%                              | \$0                         | 0.0%                        | \$U<br>©0  | 0.0%                         | \$0        |  |
| 29       | O&M Year 29 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$U            | 0.0%                              | \$0                         | 0.0%                        | \$U        | 0.0%                         | \$0        |  |
| 30       | O&M Year 30 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 90.0%          | \$469,916      | 0.0%                              | \$0<br>\$0                  | 2.3%                        | \$57,500   | 0.0%                         | \$27,255   |  |
| 31       | O&M Year 31 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0<br>\$0     | 2.5%                              | \$0<br>\$52,100             | 0.0%                        | \$0<br>\$0 | 0.0%                         | \$0<br>\$0 |  |
| 32       | O&M Year 32 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0<br>\$0     | 2.3%                              | a03,199                     | 0.0%                        | \$U        | 0.0%                         | \$0<br>\$0 |  |
| 33       | O&M Year 33 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0<br>\$0     | 0.0%                              | \$0<br>\$0                  | 0.0%                        | \$0<br>\$0 | 0.0%                         | \$0<br>\$0 |  |
| 34       | Oam Year 34 | LS        | % of Const.                        | 142.0%                       | \$471,000       | 0.0%           | \$0            | 0.0%                              | \$0<br>\$0                  | 0.0%                        | \$0        | 0.0%                         | \$0<br>\$0 |  |
| 30       | O&M Year 35 | LS        | % of Const.                        | 142.0%                       | \$471,000       | 0.0%           | \$490.016      | 0.0%                              | \$0<br>\$0                  | 0.0%                        | \$0<br>\$0 | 0.0%                         | \$0<br>\$0 |  |
| 27       | ORM Voor 27 | 1.5       | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 37       | O&M Voor 29 | 1.5       | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 30       | O&M Year 30 | 1.5       | % of Const                         | 142.0%                       | \$471.606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 40       | O&M Year 40 | 1.5       | % of Const                         | 142.0%                       | \$471.606       | 0.0%           | \$0            | 2.5%                              | \$53,199                    | 2.5%                        | \$57.500   | 10.0%                        | \$27,255   |  |
| 40<br>41 | O&M Year 41 | 19        | % of Const                         | 142.0%                       | \$471.606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 42       | O&M Year 42 | 15        | % of Const                         | 142.0%                       | \$471.606       | 90.0%          | \$489 916      | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 43       | O&M Year 43 | 15        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 44       | Q&M Year 44 | LS        | % of Const                         | 142.0%                       | \$471.606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 45       | O&M Year 45 | 15        | % of Const.                        | 142.0%                       | \$471.606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 46       | O&M Year 46 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 47       | Q&M Year 47 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 48       | O&M Year 48 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 90.0%          | \$489,916      | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 49       | O&M Year 49 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 0.0%                              | \$0                         | 0.0%                        | \$0        | 0.0%                         | \$0        |  |
| 50       | O&M Year 50 | LS        | % of Const.                        | 142.0%                       | \$471,606       | 0.0%           | \$0            | 2.5%                              | \$53,199                    | 2.5%                        | \$57,500   | 10.0%                        | \$27,255   |  |
|          | L           |           |                                    | . 142.070 \$4/1,000 0.0% \$0 |                 |                |                | ,                                 |                             |                             |            |                              |            |  |
|          | Total       | O&M Cos   | t per Location:                    | \$23.                        | 580,275         | \$3.919.326    |                | \$319,194                         |                             | \$287,500                   |            | \$136,275                    |            |  |
|          |             | O&M Cor   | ntinency (30%):                    | \$7.0                        | 74,083          | \$1,1          | 75,798         | \$9                               | 5,758                       | \$86,250                    |            | \$40,883                     |            |  |
|          |             | Total Con | al Construction Cost: \$30,654,358 |                              |                 | \$5,0          | 95,123         | \$41                              | 4,952                       | \$37                        | 73,750     | \$17                         | 7,158      |  |



#### PROBLEM LOCATION 7: EAST DRAIN TO BELOW VINTON BRIDGE

Page 1 of 2

|          |                                                     |      |             |             | S               | ediment Rem |                 | Non-Sediment Removal Alternatives |                    |                           |            |                          |            |
|----------|-----------------------------------------------------|------|-------------|-------------|-----------------|-------------|-----------------|-----------------------------------|--------------------|---------------------------|------------|--------------------------|------------|
| Item No. | Item Description                                    | UOM  | Unit Cost   | Channel Exc | avation (Short) | Channel Exc | cavation (Long) | Channel Exca                      | vation (Localized) | Sediment Traps in Arroyos |            | Low-Elevation Spur Dikes |            |
|          |                                                     |      |             | Quant.      | Total Cost      | Quant.      | Total Cost      | Quant.                            | Total Cost         | Quant.                    | Total Cost | Quant.                   | Total Cost |
| 1        | Mobilization / Demobilization                       | LS   | 12.50%      | 1           | \$38,865        | 1           | \$49,229        | 1                                 | \$4,487            | 1                         | \$42,078   | 1                        | \$44,518   |
| 2        | Site Access and Staging                             | LS   | 2.50%       | 1           | \$7,773         | 1           | \$9,846         | 1                                 | \$897              | 1                         | \$8,416    | 1                        | \$8,904    |
| 3        | Clearing and Grubbing                               | ACRE | \$2,000.00  | 2.3         | \$4,620         | 3.1         | \$6,140         | 0.5                               | \$1,040            | 2.7                       | \$5,400    | 1.1                      | \$2,200    |
| 4        | Excavation (Sediment Removal)                       | CY   | \$2.75      | 38,050      | \$104,638       | 48,160      | \$132,440       | 4,330                             | \$11,908           | 0                         | \$0        | 0                        | \$0        |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY   | \$3.80      | 38,050      | \$144,590       | 48,160      | \$183,008       | 4,330                             | \$16,454           | 0                         | \$0        | 0                        | \$0        |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY   | \$1.50      | 38,050      | \$57,075        | 48,160      | \$72,240        | 4,330                             | \$6,495            | 0                         | \$0        | 0                        | \$0        |
| 7        | Excavation (Sediment Traps)                         | CY   | \$4.25      | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 14,259                    | \$60,601   | 0                        | \$0        |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF   | \$50.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF   | \$75.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 50                        | \$3,750    | 0                        | \$0        |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF   | \$85.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 260                       | \$22,100   | 0                        | \$0        |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF   | \$30.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 275                       | \$8,250    | 0                        | \$0        |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF   | \$55.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 245                       | \$13,475   | 0                        | \$0        |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF   | \$70.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 95                        | \$6,650    | 0                        | \$0        |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY   | \$3.50      | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 1,360                     | \$4,760    | 0                        | \$0        |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY   | \$15.25     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 150                       | \$2,288    | 0                        | \$0        |
| 16       | Pilot Channel Excavation                            | CY   | \$6.50      | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 17       | Maintenance Road                                    | SF   | \$2.00      | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 24,675                    | \$49,350   | 0                        | \$0        |
| 18       | Debris Rack                                         | EA   | \$40,000.00 | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 4                         | \$160,000  | 0                        | \$0        |
| 19       | Structural Excavation                               | CY   | \$10.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 20       | Rock Removal                                        | CY   | \$20.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 21       | Sheet Pile Wall Demolition                          | LF   | \$100.00    | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 22       | Demo Existing Siphon                                | LF   | \$52.50     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 23       | Reinforced Concrete Box                             | CY   | \$800.00    | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 24       | Spur Dike Stone                                     | CY   | \$70.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 4,651                    | \$325,570  |
| 25       | Over-excavation (Spur Dikes)                        | CY   | \$10.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 2,326                    | \$23,260   |
| 26       | Compacted Backfill (Spur Dikes)                     | CY   | \$5.50      | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 930                      | \$5,115    |
| 27       | Bank Protection Bedding                             | CY   | \$40.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 28       | Bank Protection Riprap                              | CY   | \$70.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 29       | Concrete Sill                                       | CY   | \$625.00    | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 30       | Vortex Tube                                         | LF   | \$25.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 31       | Escape Channels                                     | LF   | \$35.00     | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 32       | Control Gate                                        | EA   | \$2,000.00  | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 33       | 12-in CMP Culvert                                   | EA   | \$1,500.00  | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 34       | Eastside Canal Overflow Check and Bypass            | EA   | \$800,000   | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 35       | Westside Canal Overflow Check and Bypass            | EA   | \$1,050,000 | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
| 36       | Mesilla Dam Gate Automation                         | EA   | \$1,000,000 | 0           | \$0             | 0           | \$0             | 0                                 | \$0                | 0                         | \$0        | 0                        | \$0        |
|          |                                                     |      |             |             |                 |             |                 |                                   |                    | 0007.447 0.400.507        |            |                          |            |

| Total Construction Cost per Alternative:   | \$357,561 | \$452,902 | \$41,281 | \$387,117 | \$409,567 |
|--------------------------------------------|-----------|-----------|----------|-----------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$53,634  | \$67,935  | \$6,192  | \$58,068  | \$61,435  |
| Construction Management (CM - 10%)         | \$35,756  | \$45,290  | \$4,128  | \$38,712  | \$40,957  |
| Sub-total Cost (1):                        | \$446,951 | \$566,128 | \$51,601 | \$483,896 | \$511,958 |
| Construction Continency (30%):             | \$107,268 | \$135,871 | \$12,384 | \$116,135 | \$122,870 |
| Total Construction Cost:                   | \$554,219 | \$701,998 | \$63,986 | \$600,031 | \$634,828 |



#### PROBLEM LOCATION 7: EAST DRAIN TO BELOW VINTON BRIDGE

PROJECT NO: T33261 DATE: 8/25/2015

| Page 2 of 2 |
|-------------|
|-------------|

| O&M COSTS BY ALTERNATIVE           |                    |           |                |             |                 |               |                  |               |                    |              |                |               |                 |
|------------------------------------|--------------------|-----------|----------------|-------------|-----------------|---------------|------------------|---------------|--------------------|--------------|----------------|---------------|-----------------|
|                                    |                    |           |                |             | S               | ediment Rem   | noval Alternativ | es            |                    | No           | n-Sediment Rei | noval Altern  | atives          |
| Year                               | O&M Year           | UOM       | Unit Cost      | Channel Exc | avation (Short) | Channel Exe   | cavation (Long)  | Channel Excav | vation (Localized) | Sediment Tr  | aps in Arroyos | Low-Elevat    | ion Spur Dikes  |
|                                    |                    |           |                | O&M %       | Total Cost      | O&M %         | Total Cost       | O&M %         | Total Cost         | O&M %        | Total Cost     | O&M %         | Total Cost      |
| 1                                  | O&M Year 1         | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 0.0%          | \$0             |
| 2                                  | O&M Year 2         | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 0.0%         | \$0            | 0.0%          | \$0             |
| 3                                  | O&M Year 3         | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 15.6%        | \$60,390       | 0.0%          | \$0             |
| 4                                  | O&M Year 4         | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 0.0%         | \$0            | 0.0%          | \$0             |
| 5                                  | O&M Year 5         | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 15.0%         | \$61,435        |
| 6                                  | O&M Year 6         | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 15.6%        | \$60,390       | 0.0%          | \$0             |
| 7                                  | O&M Year 7         | LS        | % of Const.    | 92.0%       | \$328,956       | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 0.0%          | \$0             |
| 8                                  | O&M Year 8         | LS        | % of Const.    | 0.0%        | \$0             | 92.0%         | \$416,670        | 75.0%         | \$30,961           | 0.0%         | \$0            | 0.0%          | \$0             |
| 9                                  | O&M Year 9         | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 15.6%        | \$60,390       | 0.0%          | \$0             |
| 10                                 | O&M Year 10        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 0.0%         | \$0            | 25.0%         | \$102,392       |
| 11                                 | O&M Year 11        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 0.0%          | \$0             |
| 12                                 | O&M Year 12        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 15.6%        | \$60,390       | 0.0%          | \$0             |
| 13                                 | O&M Year 13        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 0.0%          | \$0             |
| 14                                 | O&M Year 14        | LS        | % of Const.    | 92.0%       | \$328,956       | 0.0%          | \$0              | 75.0%         | \$30,961           | 0.0%         | \$0            | 0.0%          | \$0             |
| 15                                 | O&M Year 15        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 15.6%        | \$60,390       | 15.0%         | \$61,435        |
| 16                                 | O&M Year 16        | LS        | % of Const.    | 0.0%        | \$0             | 92.0%         | \$416,670        | 75.0%         | \$30,961           | 0.0%         | \$0            | 0.0%          | \$0             |
| 17                                 | O&M Year 17        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 0.0%          | \$0             |
| 18                                 | O&M Year 18        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 15.6%        | \$60,390       | 0.0%          | \$0             |
| 19                                 | O&M Year 19        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0<br>\$0       | 0.0%          | \$0                | 0.0%         | \$0            | 0.0%          | \$0             |
| 20                                 | O&M Year 20        | LS        | % of Const.    | 0.0%        | \$U             | 0.0%          | \$0              | 75.0%         | \$30,961           | 0.0%         | 0¢             | 25.0%         | \$102,392       |
| 21                                 | O&M Year 21        | LS        | % of Const.    | 92.0%       | \$328,956       | 0.0%          | \$U<br>\$0       | 0.0%          | \$U<br>\$20.061    | 15.6%        | \$60,390       | 0.0%          | \$U<br>\$0      |
| 22                                 | O&M Year 22        | LS        | % of Const.    | 0.0%        | \$0<br>\$0      | 0.0%          | \$0<br>\$0       | 75.0%         | \$30,901           | 0.0%         | \$0<br>\$0     | 0.0%          | \$0<br>\$0      |
| 23                                 | Own Year 23        | LS        | % of Const.    | 0.0%        | \$0<br>\$0      | 0.0%          | ΦU<br>\$416.670  | 75.0%         | \$0<br>\$20.061    | 15.6%        | \$0<br>\$0     | 0.0%          | \$0<br>\$0      |
| 24                                 | O&M Year 25        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0,070          | 0.0%          | \$30,301           | 0.0%         | \$00,350       | 15.0%         | \$0<br>\$61.425 |
| 20                                 | O&M Voar 26        | 1.9       | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 0.0%         | \$0            | 0.0%          | \$0             |
| 20                                 | O&M Year 27        | 1.5       | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 15.6%        | \$60,390       | 0.0%          | \$0             |
| 28                                 | O&M Year 28        | 1.5       | % of Const.    | 92.0%       | \$328.956       | 0.0%          | \$0              | 75.0%         | \$30.961           | 0.0%         | \$0            | 0.0%          | \$0             |
| 29                                 | O&M Year 29        | 1.5       | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 0.0%          | \$0             |
| 30                                 | O&M Year 30        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 15.6%        | \$60,390       | 25.0%         | \$102,392       |
| 31                                 | Q&M Year 31        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 0.0%          | \$0             |
| 32                                 | O&M Year 32        | LS        | % of Const.    | 0.0%        | \$0             | 92.0%         | \$416,670        | 75.0%         | \$30,961           | 0.0%         | \$0            | 0.0%          | \$0             |
| 33                                 | O&M Year 33        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 15.6%        | \$60,390       | 0.0%          | \$0             |
| 34                                 | O&M Year 34        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 0.0%         | \$0            | 0.0%          | \$0             |
| 35                                 | O&M Year 35        | LS        | % of Const.    | 92.0%       | \$328,956       | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 15.0%         | \$61,435        |
| 36                                 | O&M Year 36        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 15.6%        | \$60,390       | 0.0%          | \$0             |
| 37                                 | O&M Year 37        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 0.0%          | \$0             |
| 38                                 | O&M Year 38        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 0.0%         | \$0            | 0.0%          | \$0             |
| 39                                 | O&M Year 39        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 15.6%        | \$60,390       | 0.0%          | \$0             |
| 40                                 | O&M Year 40        | LS        | % of Const.    | 0.0%        | \$0             | 92.0%         | \$416,670        | 75.0%         | \$30,961           | 0.0%         | \$0            | 25.0%         | \$102,392       |
| 41                                 | O&M Year 41        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 0.0%          | \$0             |
| 42                                 | O&M Year 42        | LS        | % of Const.    | 92.0%       | \$328,956       | 0.0%          | \$0              | 75.0%         | \$30,961           | 15.6%        | \$60,390       | 0.0%          | \$0             |
| 43                                 | O&M Year 43        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 0.0%          | \$0             |
| 44                                 | O&M Year 44        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 0.0%         | \$0            | 0.0%          | \$0             |
| 45                                 | O&M Year 45        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 15.6%        | \$60,390       | 15.0%         | \$61,435        |
| 46                                 | U&M Year 46        | LS        | % of Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 75.0%         | \$30,961           | 0.0%         | \$0            | 0.0%          | \$0             |
| 47                                 | O&M Year 47        | LS        | % or Const.    | 0.0%        | \$0             | 0.0%          | \$0              | 0.0%          | \$0                | 0.0%         | \$0            | 0.0%          | \$0             |
| 48                                 | U&M Year 48        | LS        | % of Const.    | 0.0%        | \$0             | 92.0%         | \$416,670        | 75.0%         | \$30,961           | 15.6%        | \$60,390       | 0.0%          | \$0             |
| 49                                 | U&M Year 49        | LS        | % of Const.    | 92.0%       | \$328,956       | 0.0%          | \$U              | 75.0%         | \$U<br>€20.0€1     | 0.0%         | \$U<br>€0      | 0.0%          | \$U<br>€102.200 |
| 50 UCANI YEAR 50 LS % OF CONSt. 0. |                    |           |                |             | <b>2</b> 0      | 0.0%          | φU               | 75.0%         | \$30,901           | 0.0%         | ΦU             | 25.0%         | \$102,392       |
|                                    | Tatal              | 08M Caa   | t por Location | ¢0.0        | 02 602          | ¢0.6          | 00.020           | ¢77           | 74 019             | ¢04          | 6 242          | ¢o,           | 10 124          |
| Total O&M Cost per Location:       |                    |           | φ2,3<br>¢cr    | 02,052      | φ2,5<br>¢74     | 50,020        | 0/1<br>600       | -,010         |                    | 0,240        | 06<br>02       | 45 740        |                 |
|                                    |                    | Total Con | struction Cost | ¢0<br>\$20  | 93 500          | φ/:<br>\$2.2  | 50 026           | φ20<br>\$1.0  | 06 224             | ې20<br>1 1 2 | 56 116         | φ24<br>\$1 C  | 64 874          |
|                                    | Total Constructio. |           |                |             | ,               | Ψ <b>0</b> ,2 |                  | φ1,0          | ,                  | 2,1 پ        |                | φ <b>ι</b> ,υ | ,               |



#### PROBLEM LOCATION 8: ABOVE COUNTRY CLUB BRIDGE TO NEMEXAS SIPHON

Page 1 of 2

|          |                                                     |      |             |            | S                | ediment Rem | noval Alternativ | es           |                    | No           | n-Sediment Re            | moval Altern | atives         |
|----------|-----------------------------------------------------|------|-------------|------------|------------------|-------------|------------------|--------------|--------------------|--------------|--------------------------|--------------|----------------|
| Item No. | Item Description                                    | UOM  | Unit Cost   | Channel Ex | cavation (Short) | Channel Exe | cavation (Long)  | Channel Exca | vation (Localized) | Riprap in Na | rrow Floodplain<br>Areas | Low-Elevat   | ion Spur Dikes |
|          |                                                     |      |             | Quant.     | Total Cost       | Quant.      | Total Cost       | Quant.       | Total Cost         | Quant.       | Total Cost               | Quant.       | Total Cost     |
| 1        | Mobilization / Demobilization                       | LS   | 12.50%      | 1          | \$21,817         | 1           | \$43,784         | 1            | \$8,985            | 1            | \$29,131                 | 1            | \$21,414       |
| 2        | Site Access and Staging                             | LS   | 2.50%       | 1          | \$4,363          | 1           | \$8,757          | 1            | \$1,797            | 1            | \$5,826                  | 1            | \$4,283        |
| 3        | Clearing and Grubbing                               | ACRE | \$2,000.00  | 0.7        | \$1,300          | 2.1         | \$4,120          | 0.6          | \$1,280            | 0.8          | \$1,600                  | 0.5          | \$1,000        |
| 4        | Excavation (Sediment Removal)                       | CY   | \$2.75      | 21,520     | \$59,180         | 43,000      | \$118,250        | 8,770        | \$24,118           | 0            | \$0                      | 0            | \$0            |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY   | \$3.80      | 21,520     | \$81,776         | 43,000      | \$163,400        | 8,770        | \$33,326           | 0            | \$0                      | 0            | \$0            |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY   | \$1.50      | 21,520     | \$32,280         | 43,000      | \$64,500         | 8,770        | \$13,155           | 0            | \$0                      | 0            | \$0            |
| 7        | Excavation (Sediment Traps)                         | CY   | \$4.25      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF   | \$50.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF   | \$75.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF   | \$85.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF   | \$30.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF   | \$55.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF   | \$70.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY   | \$3.50      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY   | \$15.25     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 16       | Pilot Channel Excavation                            | CY   | \$6.50      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 17       | Maintenance Road                                    | SF   | \$2.00      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 18       | Debris Rack                                         | EA   | \$40,000.00 | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 19       | Structural Excavation                               | CY   | \$10.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 20       | Rock Removal                                        | CY   | \$20.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 21       | Sheet Pile Wall Demolition                          | LF   | \$100.00    | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 22       | Demo Existing Siphon                                | LF   | \$52.50     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 23       | Reinforced Concrete Box                             | CY   | \$800.00    | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 24       | Spur Dike Stone                                     | CY   | \$70.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 2,238        | \$156,660      |
| 25       | Over-excavation (Stone Placement)                   | CY   | \$10.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 750          | \$7,500                  | 1,119        | \$11,190       |
| 26       | Compacted Backfill (Stone Placement)                | CY   | \$5.50      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 500          | \$2,750                  | 448          | \$2,464        |
| 27       | Bank Protection Bedding                             | CY   | \$40.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 700          | \$28,000                 | 0            | \$0            |
| 28       | Bank Protection Riprap                              | CY   | \$70.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 2,760        | \$193,200                | 0            | \$0            |
| 29       | Concrete Sill                                       | CY   | \$625.00    | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 30       | Vortex Tube                                         | LF   | \$25.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 31       | Escape Channels                                     | LF   | \$35.00     | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 32       | Control Gate                                        | EA   | \$2,000.00  | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 33       | 12-in CMP Culvert                                   | EA   | \$1,500.00  | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 34       | Eastside Canal Overflow Check and Bypass            | EA   | \$800,000   | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 35       | Westside Canal Overflow Check and Bypass            | EA   | \$1,050,000 | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
| 36       | Mesilla Dam Gate Automation                         | EA   | \$1,000,000 | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0            | \$0                      | 0            | \$0            |
|          |                                                     |      |             |            |                  |             |                  |              |                    |              |                          |              |                |
|          |                                                     |      |             |            |                  |             |                  |              |                    |              |                          |              |                |

| Total Construction Cost per Alternative:   | \$200,716 | \$402,811 | \$82,660  | \$268,008 | \$197,011 |
|--------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$30,107  | \$60,422  | \$12,399  | \$40,201  | \$29,552  |
| Construction Management (CM - 10%)         | \$20,072  | \$40,281  | \$8,266   | \$26,801  | \$19,701  |
| Sub-total Cost (1):                        | \$250,896 | \$503,513 | \$103,325 | \$335,009 | \$246,264 |
| Construction Continency (30%):             | \$60,215  | \$120,843 | \$24,798  | \$80,402  | \$59,103  |
| Total Construction Cost:                   | \$311,110 | \$624,356 | \$128,123 | \$415,412 | \$305,367 |



#### PROBLEM LOCATION 8: ABOVE COUNTRY CLUB BRIDGE TO NEMEXAS SIPHON

| Page 2  | of 2 |
|---------|------|
| - ago - |      |

|                              | O&M COSTS BY ALTERNATIVE |     |             |             |                  |             |                  |              |                    |                                   |                         |            |                 |  |
|------------------------------|--------------------------|-----|-------------|-------------|------------------|-------------|------------------|--------------|--------------------|-----------------------------------|-------------------------|------------|-----------------|--|
|                              |                          |     |             |             | S                | ediment Ren | noval Alternativ | es           |                    | Non-Sediment Removal Alternatives |                         |            |                 |  |
| Year                         | O&M Year                 | UOM | Unit Cost   | Channel Exc | avation (Short)  | Channel Ex  | cavation (Long)  | Channel Exca | vation (Localized) | Riprap in Na<br>A                 | rrow Floodplain<br>reas | Low-Elevat | ion Spur Dikes  |  |
|                              |                          |     |             | O&M %       | Total Cost       | O&M %       | Total Cost       | O&M %        | Total Cost         | O&M %                             | Total Cost              | O&M %      | Total Cost      |  |
| 1                            | O&M Year 1               | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 2                            | O&M Year 2               | LS  | % of Const. | 75.0%       | \$150,537        | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 3                            | O&M Year 3               | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 4                            | O&M Year 4               | LS  | % of Const. | 75.0%       | \$150,537        | 85.0%       | \$342,389        | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 5                            | O&M Year 5               | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 15.0%      | \$29,552        |  |
| 6                            | O&M Year 6               | LS  | % of Const. | 75.0%       | \$150,537        | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 7                            | O&M Year 7               | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 8                            | O&M Year 8               | LS  | % of Const. | 75.0%       | \$150,537        | 85.0%       | \$342,389        | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 9                            | O&M Year 9               | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 10                           | O&M Year 10              | LS  | % of Const. | 75.0%       | \$150,537        | 0.0%        | \$0              | 60.0%        | \$49,596           | 15.0%                             | \$40,201                | 25.0%      | \$49,253        |  |
| 11                           | O&M Year 11              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 12                           | O&M Year 12              | LS  | % of Const. | 75.0%       | \$150,537        | 85.0%       | \$342,389        | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 13                           | O&M Year 13              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 14                           | O&M Year 14              | LS  | % of Const. | 75.0%       | \$150,537        | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 15                           | O&M Year 15              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 15.0%      | \$29,552        |  |
| 16                           | O&M Year 16              | LS  | % of Const. | 75.0%       | \$150,537        | 85.0%       | \$342,389        | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 17                           | O&M Year 17              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 18                           | O&M Year 18              | LS  | % of Const. | 75.0%       | \$150,537        | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 19                           | O&M Year 19              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 20                           | O&M Year 20              | LS  | % of Const. | 75.0%       | \$150,537        | 85.0%       | \$342,389        | 60.0%        | \$49,596           | 15.0%                             | \$40,201                | 25.0%      | \$49,253        |  |
| 21                           | O&M Year 21              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 22                           | O&M Year 22              | LS  | % of Const. | 75.0%       | \$150,537        | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 23                           | O&M Year 23              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 24                           | O&M Year 24              | LS  | % of Const. | 75.0%       | \$150,537        | 85.0%       | \$342,389        | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 25                           | O&M Year 25              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 15.0%      | \$29,552        |  |
| 26                           | O&M Year 26              | LS  | % of Const. | 75.0%       | \$150,537        | 0.0%        | \$U<br>©0        | 60.0%        | \$49,596           | 0.0%                              | \$U<br>\$0              | 0.0%       | \$0             |  |
| 27                           | O&M Year 27              | LS  | % of Const. | 0.0%        | \$U<br>\$150.537 | 0.0%        | \$U<br>\$242.280 | 60.0%        | \$49,596           | 0.0%                              | \$U<br>\$0              | 0.0%       | \$U<br>\$0      |  |
| 28                           | O&M Year 28              | LS  | % of Const. | 75.0%       | \$150,557        | 0.0%        | \$342,369        | 60.0%        | \$49,596           | 0.0%                              | \$0<br>\$0              | 0.0%       | \$0<br>\$0      |  |
| 29                           | Oam Year 29              | LS  | % of Const. | 75.0%       | ΦU<br>\$150.527  | 0.0%        | \$0<br>\$0       | 60.0%        | \$49,596           | 15.0%                             | \$0<br>\$40.201         | 25.0%      | \$0<br>\$40.252 |  |
| 30                           | ORM Veer 31              | LO  | % of Const  | 0.0%        | \$0              | 0.0%        | \$0<br>\$0       | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 31                           | O&M Year 31              | LS  | % of Const  | 75.0%       | \$150.537        | 85.0%       | \$342 389        | 60.0%        | \$49,590           | 0.0%                              | \$0<br>\$0              | 0.0%       | \$0<br>\$0      |  |
| 32                           | O&M Voar 22              | 19  | % of Const  | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 34                           | ORM Year 34              | 1.9 | % of Const  | 75.0%       | \$150 537        | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 35                           | O&M Year 35              | 15  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 15.0%      | \$29.552        |  |
| 36                           | O&M Year 36              | LS  | % of Const. | 75.0%       | \$150.537        | 85.0%       | \$342,389        | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 37                           | O&M Year 37              | 1.5 | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 38                           | Q&M Year 38              | LS  | % of Const. | 75.0%       | \$150.537        | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 39                           | Q&M Year 39              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 40                           | O&M Year 40              | LS  | % of Const. | 75.0%       | \$150,537        | 85.0%       | \$342,389        | 60.0%        | \$49,596           | 15.0%                             | \$40,201                | 25.0%      | \$49,253        |  |
| 41                           | O&M Year 41              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 42                           | O&M Year 42              | LS  | % of Const. | 75.0%       | \$150,537        | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 43                           | O&M Year 43              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 44                           | O&M Year 44              | LS  | % of Const. | 75.0%       | \$150,537        | 85.0%       | \$342,389        | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 45                           | O&M Year 45              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 15.0%      | \$29,552        |  |
| 46                           | O&M Year 46              | LS  | % of Const. | 75.0%       | \$150,537        | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 47                           | O&M Year 47              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 48                           | O&M Year 48              | LS  | % of Const. | 75.0%       | \$150,537        | 85.0%       | \$342,389        | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 49                           | O&M Year 49              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 60.0%        | \$49,596           | 0.0%                              | \$0                     | 0.0%       | \$0             |  |
| 50                           | O&M Year 50              | LS  | % of Const. | 75.0%       | \$150,537        | 0.0%        | \$0              | 60.0%        | \$49,596           | 15.0%                             | \$40,201                | 25.0%      | \$49,253        |  |
|                              |                          |     |             |             |                  |             |                  |              |                    |                                   |                         |            |                 |  |
| Total O&M Cost per Location: |                          |     |             |             | 63,433           | \$4,1       | 08,667           | \$2,4        | 79,808             | \$20                              | 01,006                  | \$394,022  |                 |  |
|                              | O&M Continency (30%):    |     | \$1,1       | 29,030      | \$1,2            | 32,600      | \$74             | 13,942       | \$6                | 0,302                             | \$11                    | 18,207     |                 |  |
|                              | Total Construction Cost: |     | \$4,8       | 92,462      | \$5,3            | 41,267      | \$3,2            | 23,751       | \$26               | 51,307                            | \$51                    | 12,229     |                 |  |



PROBLEM LOCATION 9: MONTOYA DRAIN TO AMERICAN DAM

Page 1 of 2

|          | CONSTRUCTION COSTS BY ALTERNATIVE                   |            |                  |            |                  |             |                  |              |                    |                       |                               |              |                |
|----------|-----------------------------------------------------|------------|------------------|------------|------------------|-------------|------------------|--------------|--------------------|-----------------------|-------------------------------|--------------|----------------|
|          |                                                     |            |                  |            | S                | ediment Rem | noval Alternativ | es           |                    | No                    | n-Sediment Rei                | noval Altern | atives         |
| Item No. | Item Description                                    | UOM        | Unit Cost        | Channel Ex | cavation (Short) | Channel Exe | cavation (Long)  | Channel Exca | vation (Localized) | Island De<br>Vegetati | stabilization /<br>on Removal | Low-Elevat   | ion Spur Dikes |
|          |                                                     |            |                  | Quant.     | Total Cost       | Quant.      | Total Cost       | Quant.       | Total Cost         | Quant.                | Total Cost                    | Quant.       | Total Cost     |
| 1        | Mobilization / Demobilization                       | LS         | 12.50%           | 1          | \$39,413         | 1           | \$179,007        | 1            | \$15,808           | 1                     | \$15,395                      | 1            | \$16,328       |
| 2        | Site Access and Staging                             | LS         | 2.50%            | 1          | \$7,883          | 1           | \$35,801         | 1            | \$3,162            | 1                     | \$3,079                       | 1            | \$3,266        |
| 3        | Clearing and Grubbing                               | ACRE       | \$2,000.00       | 4.2        | \$8,360          | 6.6         | \$13,240         | 0.2          | \$480              | 14.5                  | \$29,000                      | 0.4          | \$800          |
| 4        | Excavation (Sediment Removal)                       | CY         | \$2.75           | 38,130     | \$104,858        | 176,250     | \$484,688        | 15,650       | \$43,038           | 11,697                | \$32,166                      | 0            | \$0            |
| 5        | Load/Haul to Local Disposal Site (Sediment Removal) | CY         | \$3.80           | 38,130     | \$144,894        | 176,250     | \$669,750        | 15,650       | \$59,470           | 11,697                | \$44,447                      | 0            | \$0            |
| 6        | Compacted Fill at Disposal Site (Sediment Removal)  | CY         | \$1.50           | 38,130     | \$57,195         | 176,250     | \$264,375        | 15,650       | \$23,475           | 11,697                | \$17,545                      | 0            | \$0            |
| 7        | Excavation (Sediment Traps)                         | CY         | \$4.25           | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 8        | 1-ft Rebar Mesh (Sediment Trap)                     | LF         | \$50.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 9        | 8-in Rebar Mesh (Sediment Trap)                     | LF         | \$75.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 10       | 6-in Rebar Mesh (Sediment Trap)                     | LF         | \$85.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 11       | 4-in Wire Mesh (Sediment Trap)                      | LF         | \$30.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 12       | 2-in Wire Mesh (Sediment Trap)                      | LF         | \$55.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 13       | 1-in Wire Mesh (Sediment Trap)                      | LF         | \$70.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 14       | Compacted Fill (Sediment Trap Berm)                 | CY         | \$3.50           | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 15       | Rock Slope Protection (Sediment Trap Berm)          | CY         | \$15.25          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 16       | Pilot Channel Excavation                            | CY         | \$6.50           | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 17       | Maintenance Road                                    | SF         | \$2.00           | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 18       | Debris Rack                                         | EA         | \$40,000.00      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 19       | Structural Excavation                               | CY         | \$10.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 20       | Rock Removal                                        | CY         | \$20.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 21       | Sheet Pile Wall Demolition                          | LF         | \$100.00         | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 22       | Demo Existing Siphon                                | LF         | \$52.50          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 23       | Reinforced Concrete Box                             | CY         | \$800.00         | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 24       | Spur Dike Stone                                     | CY         | \$70.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 1,706        | \$119,420      |
| 25       | Over-excavation (Spur Dikes)                        | CY         | \$10.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 853          | \$8,530        |
| 26       | Compacted Backfill (Spur Dikes)                     | CY         | \$5.50           | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 341          | \$1,876        |
| 27       | Bank Protection Bedding                             | CY         | \$40.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 28       | Bank Protection Riprap                              | CY         | \$70.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 29       | Concrete Sill                                       | CY         | \$625.00         | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 30       | Vortex Tube                                         | LF         | \$25.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 31       | Escape Channels                                     | LF         | \$35.00          | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 32       | Control Gate                                        | EA         | \$2,000.00       | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 33       | 12-in CMP Culvert                                   | EA         | \$1,500.00       | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 34       | Eastside Canal Overflow Check and Bypass            | EA         | \$800,000        | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 35       | Westside Canal Overflow Check and Bypass            | EA         | \$1,050,000      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
| 36       | Mesilla Dam Gate Automation                         | EA         | \$1,000,000      | 0          | \$0              | 0           | \$0              | 0            | \$0                | 0                     | \$0                           | 0            | \$0            |
|          |                                                     |            |                  |            |                  | -           |                  |              |                    |                       |                               |              |                |
|          | Total Constru                                       | ation Coat | oor Alternetives | ¢2/        | 22,602           | ¢1 6        | 246.960          | ¢1.          | 15 422             | ¢1.                   | 11 622                        | ¢ 41         | 50.010         |

| Total Construction Cost per Alternative:   | \$362,602 | \$1,646,860 | \$145,432 | \$141,632 | \$150,219 |
|--------------------------------------------|-----------|-------------|-----------|-----------|-----------|
| Planning, Engineering & Design (PED - 15%) | \$54,390  | \$247,029   | \$21,815  | \$21,245  | \$22,533  |
| Construction Management (CM - 10%)         | \$36,260  | \$164,686   | \$14,543  | \$14,163  | \$15,022  |
| Sub-total Cost (1):                        | \$453,253 | \$2,058,575 | \$181,790 | \$177,040 | \$187,774 |
| Construction Continency (30%):             | \$108,781 | \$494,058   | \$43,630  | \$42,490  | \$45,066  |
| Total Construction Cost:                   | \$562,034 | \$2,552,634 | \$225,419 | \$219,529 | \$232,840 |



PROBLEM LOCATION 9: MONTOYA DRAIN TO AMERICAN DAM

Page 2 of 2

| O&M COSTS BY ALTERNATIVE                 |                          |     |             |             |                  |             |                  |              |                    |          |               |              |                 |
|------------------------------------------|--------------------------|-----|-------------|-------------|------------------|-------------|------------------|--------------|--------------------|----------|---------------|--------------|-----------------|
|                                          |                          |     |             |             | 3                | eaiment Ken | ioval Alternativ | es           |                    | NO       | n-Sealment Ke | noval Altern | atives          |
| Year                                     | O&M Year                 | UOM | Unit Cost   | Channel Exc | avation (Short)  | Channel Exe | cavation (Long)  | Channel Exca | vation (Localized) | Vegetati | on Removal    | Low-Elevat   | ion Spur Dikes  |
|                                          |                          |     | % at Canat  | O&M %       | Total Cost       | O&M %       | Total Cost       | O&M %        | Total Cost         | 0&M %    | Total Cost    | O&M %        | Total Cost      |
| 1                                        | O&M Year 1               | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$U<br>©0        | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 2                                        | O&M Year 2               | LS  | % of Const. | 0.0%        | \$U<br>\$296.456 | 0.0%        | \$U<br>\$0       | 143.0%       | \$207,968          | 0.0%     | \$U<br>\$0    | 0.0%         | \$0<br>\$0      |
| 3                                        | U&M Year 3               | LS  | % of Const. | 79.0%       | \$200,430        | 0.0%        | \$U<br>\$0       | 143.0%       | \$207,966          | 0.0%     | 50<br>00      | 0.0%         | \$0<br>\$0      |
| 4                                        | U&M Year 4               | LS  | % of Const. | 0.0%        | \$U              | 0.0%        | \$U<br>\$0       | 143.0%       | \$207,968          | 25.0%    | \$35,408      | 0.0%         | \$U<br>\$00,500 |
| 5                                        | Oam Year 5               | LS  | % of Const. | 70.0%       | \$296.456        | 0.0%        | 0¢<br>02         | 143.0%       | \$207,500          | 0.0%     | \$0           | 0.0%         | \$22,555<br>\$0 |
| 5                                        | O&M Year 7               | LS  | % of Const  | 0.0%        | \$200,430        | 0.0%        | \$0<br>\$0       | 143.0%       | \$207,908          | 0.0%     | \$0           | 0.0%         | \$0<br>\$0      |
| 7                                        | O&M Yoar 8               | 1.5 | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 25.0%    | \$35.408      | 0.0%         | \$0             |
| 9                                        | O&M Year 9               | 15  | % of Const. | 79.0%       | \$286.456        | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 10                                       | O&M Year 10              | 15  | % of Const. | 0.0%        | \$0              | 96.0%       | \$1.580.986      | 143.0%       | \$207,968          | 0.0%     | \$0           | 25.0%        | \$37,555        |
| 10                                       | O&M Year 11              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 12                                       | O&M Year 12              | LS  | % of Const. | 79.0%       | \$286,456        | 0.0%        | \$0              | 143.0%       | \$207,968          | 25.0%    | \$35,408      | 0.0%         | \$0             |
| 13                                       | O&M Year 13              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 14                                       | O&M Year 14              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 15                                       | O&M Year 15              | LS  | % of Const. | 79.0%       | \$286,456        | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 15.0%        | \$22,533        |
| 16                                       | O&M Year 16              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 25.0%    | \$35,408      | 0.0%         | \$0             |
| 17                                       | O&M Year 17              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 18                                       | O&M Year 18              | LS  | % of Const. | 79.0%       | \$286,456        | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 19                                       | O&M Year 19              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 20                                       | O&M Year 20              | LS  | % of Const. | 0.0%        | \$0              | 96.0%       | \$1,580,986      | 143.0%       | \$207,968          | 25.0%    | \$35,408      | 25.0%        | \$37,555        |
| 21                                       | O&M Year 21              | LS  | % of Const. | 79.0%       | \$286,456        | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 22                                       | O&M Year 22              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 23                                       | O&M Year 23              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 24                                       | O&M Year 24              | LS  | % of Const. | 79.0%       | \$286,456        | 0.0%        | \$0              | 143.0%       | \$207,968          | 25.0%    | \$35,408      | 0.0%         | \$0             |
| 25                                       | O&M Year 25              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 15.0%        | \$22,533        |
| 26                                       | O&M Year 26              | LS  | % of Const. | 0.0%        | \$U<br>\$296.456 | 0.0%        | \$U<br>\$0       | 143.0%       | \$207,968          | 0.0%     | \$U<br>\$0    | 0.0%         | \$0<br>\$0      |
| 27                                       | O&M Year 28              | LS  | % of Const  | 0.0%        | \$200,450        | 0.0%        | \$0<br>\$0       | 143.0%       | \$207,968          | 25.0%    | \$35.408      | 0.0%         | \$0<br>\$0      |
| 20                                       | O&M Yoar 20              | 1.9 | % of Const  | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 30                                       | O&M Year 30              | 15  | % of Const. | 79.0%       | \$286.456        | 96.0%       | \$1.580.986      | 143.0%       | \$207,968          | 0.0%     | \$0           | 25.0%        | \$37,555        |
| 31                                       | O&M Year 31              | 1.5 | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 32                                       | O&M Year 32              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 25.0%    | \$35,408      | 0.0%         | \$0             |
| 33                                       | O&M Year 33              | LS  | % of Const. | 79.0%       | \$286,456        | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 34                                       | O&M Year 34              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 35                                       | O&M Year 35              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 15.0%        | \$22,533        |
| 36                                       | O&M Year 36              | LS  | % of Const. | 79.0%       | \$286,456        | 0.0%        | \$0              | 143.0%       | \$207,968          | 25.0%    | \$35,408      | 0.0%         | \$0             |
| 37                                       | O&M Year 37              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 38                                       | O&M Year 38              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 39                                       | O&M Year 39              | LS  | % of Const. | 79.0%       | \$286,456        | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 40                                       | O&M Year 40              | LS  | % of Const. | 0.0%        | \$0              | 96.0%       | \$1,580,986      | 143.0%       | \$207,968          | 25.0%    | \$35,408      | 25.0%        | \$37,555        |
| 41                                       | O&M Year 41              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 42                                       | O&M Year 42              | LS  | % of Const. | 79.0%       | \$286,456        | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 43                                       | O&M Year 43              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
| 44                                       | O&M Year 44              | LS  | % of Const. | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 25.0%    | \$35,408      | 0.0%         | \$0             |
| 45                                       | O&M Year 45              | LS  | % of Const. | 79.0%       | \$286,456        | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 15.0%        | \$22,533        |
| 46                                       | ORM Voor 47              | LS  | % of Const. | 0.0%        | \$U<br>\$0       | 0.0%        | \$U<br>\$0       | 143.0%       | \$207,968          | 0.0%     | >∪<br>\$0     | 0.0%         | \$0<br>\$0      |
| 47                                       | O&M Year 48              | 15  | % of Const  | 79.0%       | \$286.456        | 0.0%        | \$0<br>\$0       | 143.0%       | \$207,968          | 25.0%    | \$35.408      | 0.0%         | \$0             |
| 40                                       | O&M Vear 49              | 1.5 | % of Const  | 0.0%        | \$0              | 0.0%        | \$0              | 143.0%       | \$207,968          | 0.0%     | \$0           | 0.0%         | \$0             |
|                                          | 0&M Year 50              | LS  | % of Const. | 0.0%        | \$0              | 96.0%       | \$1.580.986      | 143.0%       | \$207,968          | 0.0%     | \$0           | 25.0%        | \$37.555        |
| 50 Odivi real 50 LS % Of COnst. 0.0%     |                          |     |             |             | ÷-               |             |                  |              |                    |          |               |              | ÷•·,•••         |
| Total O&M Cost per Location: \$4.583.295 |                          |     |             |             | 83,295           | \$7.9       | 04,930           | \$10,        | 398,379            | \$42     | 24,896        | \$30         | 00,439          |
| O&M Continency (30%):                    |                          |     | \$1,3       | 74,989      | \$2,3            | 371,479     | \$3,1            | 19,514       | \$12               | 27,469   | \$9           | 0,132        |                 |
|                                          | Total Construction Cost: |     |             | \$5,9       | 58,284           | \$10,       | 276,409          | \$13,        | 517,893            | \$55     | 52,364        | \$39         | 90,570          |

#### RIO GRANDE CANALIZATION PROJECT UNIT COST ASSUMPTIONS

|        |                                                     |      |            | Date: 3-Aug-15                                                                    |
|--------|-----------------------------------------------------|------|------------|-----------------------------------------------------------------------------------|
| ITEM # | ITEM DESCRIPTION                                    | UOM  | UNIT COST  | NOTES                                                                             |
| 1      | Mobilization / Demobilization                       | %    | 12 5%      | Assumes 12.5% of construction costs for moh/demoh                                 |
| 2      | Site Access and Staging                             | %    | 2.5%       | Assumes 2.5% of construction costs for site access                                |
| 3      | Clearing and Grubbing                               | ACRE | \$ 20      | 00 Assumes clearing of medium brush including trees                               |
| 4      | Excavation (Sediment Removal)                       | CY   | \$ 2       | 75 Assumes dozers to excavate and place in stocknile                              |
| 5      | Load/Haul to Local Disposal Site (Sediment Removal) | CY   | \$ 3       | 80 Assumes hauling 2-mi (roundtrin) on aver to disposal site                      |
| 6      | Compacted Fill at Disposal Site (Sediment Removal)  | CY   | \$ 1.      | 50 Assumes excavating from stockpile and compacting at disposal site.             |
| 7      | Excavation (Sediment Traps)                         | CY   | \$ 4       | 25 Assumes hydraulic exc (33% of quant.) and dozers for remaining                 |
| 8      | 1-ft Rebar Mesh                                     | LF   | \$ 50.     | 00 Assumes 1' x 1' rebar (#4) mesh. 3' high, welded, with steel posts every 12-If |
| 9      | 8-in Rebar Mesh                                     | LF   | \$ 75      | 00 Assumes 8" x 8" rebar (#4) mesh, 3' high, welded, with steel posts every 12-If |
| 10     | 6-in Rebar Mesh                                     | LF   | \$ 85      | 00 Assumes 6" x 6" rebar (#4) mesh, 3' high, welded, with steel posts every 12-If |
| 11     | 4-in Wire Mesh                                      | LF   | \$ 30      | 00 Assumes 4" x 4" wire mesh (1/8") dia., 3' high, with steel posts every 12-lf   |
| 12     | 2-in Wire Mesh                                      | LF   | \$ 55.     | 00 Assumes 2" x 2" wire mesh (1/8") dia., 3' high, with steel posts every 12-lf   |
| 13     | 1-in Wire Mesh                                      | LF   | \$ 70.     | 00 Assumes 1" x 1" wire mesh (1/8") dia., 3' high, with steel posts every 12-lf   |
| 14     | Compacted Fill (Sediment Trap Berm)                 | CY   | \$ 3.      | 50 Assumes using excavated material for berm, 3' high, 2:1 side slopes, no borrow |
| 15     | Rock Slope Protection (Sediment Trap Berm)          | CY   | \$ 15      | 25 Assumes using rock from excavated materials, placed along 1 slope of berm      |
| 16     | Pilot Channel Excavation                            | CY   | \$ 6       | 50 Assumes hydraulic excavators, material disposed on-site                        |
| 17     | Maintenance Road                                    | SF   | \$ 2       | 00 Assumes 15' wide road, graded, compacted, with stabilizing material            |
| 18     | Debris Rack                                         | EA   | \$ 40,0    | 00 Assumes steel debris racks, field constructed, at every sediment trap          |
| 19     | Structural Excavation                               | CY   | \$ 10      | 00 Assumes hydraulic excavators, material disposed on-site                        |
| 20     | Rock Removal                                        | CY   | \$ 20      | 00 Assumes removal of loose rock and disposal on-site                             |
| 21     | Sheet Pile Wall Demolition                          | LF   | \$ 1       | 00 Assumes wall is 25-vlf deep, sheet piles would be removed and salvaged         |
| 22     | Demo Existing Concrete Siphon                       | LF   | \$ 52      | 50 Assumes demo reinforced concrete box, haul materials off-site for disposal     |
| 23     | Reinforced Concrete Box                             | CY   | \$ 8       | 00 Assumes reinforced concrete box, with grading and base layer                   |
| 24     | Spur Dike Stone                                     | CY   | \$ 70      | 00 Includes material, delivery to project site, and placement                     |
| 25     | Over-excavation (Spur Dikes)                        | CY   | \$ 10      | 00 Assumes excavated material to be stockpiled on-site for re-use                 |
| 26     | Compacted Backfill (Spur Dikes)                     | CY   | \$ 5.      | 50 Assumes re-use of previous excavated materials for backfill material           |
| 27     | Bank Protection Bedding                             | CY   | \$ 40      | 00 Includes stone material, delivery and placement                                |
| 28     | Bank Protection Riprap                              | CY   | \$ 70      | 00 Includes stone material, delivery and placement                                |
| 29     | Concrete Sill                                       | CY   | \$ 6       | 25 Assumes 1' thick concrete sill for vortex tube                                 |
| 30     | Vortex Tubes                                        | LF   | \$ 25      | 00 Assumes 8" diameter tubes placed in concrete sill                              |
| 31     | Escape Channels                                     | LF   | \$ 35      | 00 Includes excavation, concrete channel, and backfill                            |
| 32     | Control Gate                                        | EA   | \$ 2,0     | 00 Includes material and installation of 12" canal gate                           |
| 33     | 12-in CMP Culvert                                   | EA   | \$ 1,5     | 00 Assumes 12" CMP culvert with gravel bedding, earthwork elsehwere, 30-lf        |
| 34     | Eastside Canal Overflow Check and Bypass            | LS   | \$ 800,0   | 00 Includes all earthwork, concrete, gates, etc. for bypass construction          |
| 35     | Westside Canal Overflow Check and Bypass            | LS   | \$ 1,050,0 | 00 Includes all earthwork, concrete, gates, etc. for bypass construction          |
| 36     | Mesilla Dam Gate Automation                         | EA   | \$ 1,000,0 | 00 Cost is a placeholder; awaiting detailed information and will be updated       |

#### **RIO GRANDE CANALIZATION PROJECT**

|          | DETAILE                                                |            | ATIONS             |           |                                         | Pa       | age: 1 01 5           |
|----------|--------------------------------------------------------|------------|--------------------|-----------|-----------------------------------------|----------|-----------------------|
| ITEM NO. | COST ITEM DESCRIPTION / SUB-COST ITEMS                 | UOM        | QUANTITY           |           | UNIT COST                               |          | TOTAL COST            |
| 1        | Fastsida Canal - New Check/Sluice Structures in Canals | 15         | 1                  | ¢         | 776 011 88                              | ¢        | 776 012               |
| -        | Lastside Canal - New Creck/Sidice Structures in Canals | 25         | -                  | Ŷ         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Ŷ        | 770,012               |
|          | .01 Earthwork                                          | LS         | 1                  | \$        | 14,636.88                               | \$       | 14,637                |
|          | a) Structural Excavation                               | CY         | 550                | \$        | 15.00                                   | \$       | 8,250                 |
|          | b) Push to Stockpile                                   | CY         | 633                | \$        | 2.50                                    | \$       | 1,581                 |
|          | c) Haul to Disposal                                    | CY         | 633                | \$        | 5.75                                    | \$       | 3,637                 |
|          | d) Compacted Backfill                                  | CY         | 138                | \$        | 8.50                                    | \$       | 1,169                 |
|          | .02 Concrete                                           | CY         | 330                | \$        | 701.14                                  | \$       | 231,375               |
|          | a) Base Layer                                          | CY         | 100                | \$        | 40.00                                   | \$       | 4,000                 |
|          | b) Structure Invert                                    | CY         | 125                | \$        | 625.00                                  | \$       | 78,125                |
|          | c) Sideslopes                                          | CY         | 140                | \$        | 675.00                                  | \$       | 94,500                |
|          | d) Gate Walls                                          | CY         | 60                 | \$        | 850.00                                  | \$       | 51,000                |
|          | e) Walkway                                             | CY         | 5                  | \$        | 750.00                                  | \$       | 3,750                 |
|          | .03 Gates                                              | LS         | 1                  | \$        | 530,000.00                              | \$       | 530,000               |
|          | a) Sluiceway Gate                                      | FΔ         | А                  | ¢         | 120 000 00                              | ¢        | 480.000               |
|          | b) Wasteway Gate                                       | EA         | 2                  | \$        | 25,000.00                               | \$<br>\$ | 50,000                |
|          |                                                        |            |                    |           |                                         | Ro       | unded Unit Cost Used: |
|          |                                                        | Eastside C | anal - New Check/S | Sluice St | ructures in Canals                      |          | \$ 800,000.00/EA      |
|          |                                                        |            |                    |           |                                         |          |                       |
| 2        | Westside Canal - New Check/Sluice Structures in Canals | LS         | 1                  | \$        | 1,049,862.50                            | \$       | 1,049,863             |
|          | .01 Earthwork                                          | LS         | 1                  | \$        | 26,612.50                               | \$       | 26,613                |
|          | a) Structural Excavation                               | CY         | 1,000              | \$        | 15.00                                   | \$       | 15,000                |
|          | b) Push to Stockpile                                   | CY         | 1,150              | \$        | 2.50                                    | \$       | 2,875                 |
|          | c) Haul to Disposal                                    | CY         | 1,150              | \$        | 5.75                                    | \$       | 6,613                 |
|          | d) Compacted Backfill                                  | CY         | 250                | \$        | 8.50                                    | \$       | 2,125                 |
|          | .02 Concrete                                           | CY         | 510                | \$        | 692.65                                  | \$       | 353,250               |
|          | a) Base Layer                                          | СҮ         | 200                | \$        | 40.00                                   | \$       | 8.000                 |
|          | b) Structure Invert                                    | CY         | 250                | \$        | 625.00                                  | \$       | 156,250               |
|          | c) Sideslopes                                          | CY         | 180                | \$        | 675.00                                  | \$       | 121,500               |
|          | d) Gate Walls                                          | CY         | 75                 | \$        | 850.00                                  | \$       | 63,750                |
|          | e) Walkway                                             | CY         | 5                  | \$        | 750.00                                  | \$       | 3,750                 |
|          | .03 Gates                                              | LS         | 1                  | \$        | 670,000.00                              | \$       | 670,000               |
|          | a) Sluiceway Gate                                      | EA         | 4                  | \$        | 155,000.00                              | \$       | 620.000               |
|          | b) Wasteway Gate                                       | EA         | 2                  | \$        | 25,000.00                               | \$       | 50,000                |
|          |                                                        |            |                    |           |                                         | Ro       | unded Unit Cost Used: |
|          |                                                        | Westside C | anal - New Check/S | Sluice St | ructures in Canals                      |          | \$ 1,050,000.00/EA    |
|          |                                                        |            |                    |           |                                         |          |                       |

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report

# **APPENDIX Q**

**Parameter Scoring Development for the Alternatives** 



## Appendix Q

Parameter Scoring Development for the Alternatives

Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report



Page Intentionally Left Blank



| Problem  | Alternative Condition    | Average Change,<br>Normal Operating<br>Flows |                  | Average Change,<br>100-year Flood |                  | Maximum Change,<br>Normal Operating<br>Flows |                  | Maximum Change,<br>100-year Flood |                  | Net Benefit | Net<br>Conse- |
|----------|--------------------------|----------------------------------------------|------------------|-----------------------------------|------------------|----------------------------------------------|------------------|-----------------------------------|------------------|-------------|---------------|
| Location |                          | Benefit<br>Score                             | Conseq.<br>Score | Benefit<br>Score                  | Conseq.<br>Score | Benefit<br>Score                             | Conseq.<br>Score | Benefit<br>Score                  | Conseq.<br>Score |             | quence        |
|          | Localized Excavation     | 6                                            | 0                | 5                                 | 0                | 1.75                                         | 0.5              | 1.00                              | 0.50             | 5.5         | 0.4           |
|          | Short Channel Excavation | 7                                            | 0                | 3                                 | 0                | 1.75                                         | 0.25             | 0.8                               | 0.50             | 5.0         | 0.3           |
| 1        | Long Channel Excavation  | 9                                            | 0                | 4                                 | 0                | 2.5                                          | 0                | 1.5                               | 0.50             | 6.8         | 0.2           |
|          | Modified Vortex Weir     | 4                                            | 0                | 0                                 | 1                | 1.5                                          | 2.5              | 0.3                               | 1.00             | 2.3         | 1.8           |
|          | Sediment Traps           | 9                                            | 0                | 4                                 | 0                | 2.5                                          | 0                | 1.0                               | 0.25             | 6.6         | 0.1           |
|          | Localized Excavation     | 4                                            | 0                | 4                                 | 0                | 1.25                                         | 0                | 1.5                               | 2.00             | 4.3         | 0.8           |
|          | Short Channel Excavation | 7                                            | 0                | 5                                 | 0                | 1.75                                         | 0.25             | 1.8                               | 0.50             | 6.2         | 0.3           |
| 2        | Long Channel Excavation  | 8                                            | 0                | 6                                 | 0                | 2                                            | 0                | 1.8                               | 0.25             | 7.1         | 0.1           |
|          | Island Destabilization   | 8                                            | 0                | 3                                 | 0                | 2                                            | 0                | 1.3                               | 0.75             | 5.7         | 0.3           |
|          | Sediment Traps           | 8                                            | 0                | 4                                 | 0                | 2.5                                          | 0.25             | 1.5                               | 0.25             | 6.4         | 0.2           |
|          | Localized Excavation     | 3                                            | 0                | 3                                 | 0                | 0.75                                         | 2.5              | 1.3                               | 1.75             | 3.2         | 1.7           |
|          | Short Channel Excavation | 4                                            | 0                | 4                                 | 0                | 1                                            | 1                | 1.0                               | 0.00             | 4.0         | 0.4           |
| 3        | Long Channel Excavation  | 4                                            | 0                | 4                                 | 0                | 1                                            | 0.25             | 1.0                               | 0.25             | 4.0         | 0.2           |
|          | Remove Siphon            | 10                                           | 0                | 8                                 | 0                | 2.5                                          | 0                | 1.8                               | 2.50             | 8.9         | 1.0           |
|          | Sediment Traps           | 1                                            | 0                | 1                                 | 0                | 0.75                                         | 1.25             | 0.5                               | 0.75             | 1.3         | 0.8           |
|          | Localized Excavation     | 4                                            | 0                | 3                                 | 0                | 1                                            | 0                | 0.8                               | 0.00             | 3.5         | 0.0           |
|          | Short Channel Excavation | 4                                            | 0                | 3                                 | 0                | 1                                            | 0                | 0.8                               | 0.25             | 3.5         | 0.1           |
| 4        | Long Channel Excavation  | 8                                            | 0                | 5                                 | 0                | 1.75                                         | 0                | 1.3                               | 0.00             | 6.4         | 0.0           |
|          | Island Destabilization   | 0                                            | 0                | 4                                 | 0                | 0.5                                          | 2.25             | 0.8                               | 0.00             | 2.1         | 0.9           |
|          | Spur Dikes               | 0                                            | 0                | 0                                 | 2                | 0.5                                          | 1.75             | 0.5                               | 1.75             | 0.4         | 2.2           |
|          | Localized Excavation     | 4                                            | 0                | 2                                 | 0                | 1.25                                         | 0                | 0.5                               | 0.00             | 3.1         | 0.0           |
|          | Short Channel Excavation | 5                                            | 0                | 3                                 | 0                | 1.5                                          | 0                | 0.8                               | 0.00             | 4.1         | 0.0           |
| 5        | Long Channel Excavation  | 8                                            | 0                | 4                                 | 0                | 1.75                                         | 0                | 0.8                               | 0.00             | 5.8         | 0.0           |
|          | Spur Dikes               | 0                                            | 0                | 0                                 | 2                | 0.5                                          | 2.25             | 0.3                               | 0.75             | 0.3         | 2.0           |
|          | Sediment Traps           | 4                                            | 0                | 2                                 | 0                | 1                                            | 0.25             | 0.3                               | 0.25             | 2.9         | 0.2           |
| 6        | Short Channel Excavation | 1                                            | 0                | 0                                 | 2                | 0.25                                         | 2.25             | 0.0                               | 0.75             | 0.5         | 2.0           |
| Ŭ        | Long Channel Excavation  | 0                                            | 0                | 0                                 | 2                | 0.5                                          | 2.5              | 0.0                               | 1.00             | 0.2         | 2.2           |
|          | Localized Excavation     | 0                                            | 0                | 0                                 | 1                | 0.25                                         | 2                | 0.0                               | 0.75             | 0.1         | 1.5           |
|          | Short Channel Excavation | 3                                            | 0                | 2                                 | 0                | 0.75                                         | 0                | 0.5                               | 0.00             | 2.5         | 0.0           |
| 7        | Long Channel Excavation  | 4                                            | 0                | 3                                 | 0                | 1                                            | 0                | 0.5                               | 0.00             | 3.4         | 0.0           |
|          | Spur Dikes               | 0                                            | 0                | 0                                 | 4                | 0                                            | 2.25             | 0.0                               | 1.50             | 0.0         | 3.1           |
|          | Sediment Traps           | 6                                            | 0                | 5                                 | 0                | 1.5                                          | 0                | 0.5                               | 0.00             | 5.2         | 0.0           |
|          | Localized Excavation     | 4                                            | 0                | 3                                 | 0                | 0.75                                         | 0                | 0.5                               | 0.00             | 3.3         | 0.0           |
| 8        | Short Channel Excavation | 4                                            | 0                | 3                                 | 0                | 0.75                                         | 0                | 0.5                               | 0.00             | 3.3         | 0.0           |
|          | Long Channel Excavation  | 4                                            | 0                | 2                                 | 0                | 0.75                                         | 0                | 0.5                               | 0.00             | 2.9         | 0.0           |
|          | Riprap                   | 0                                            | 0                | 0                                 | 1                | 0.25                                         | 0.5              | 0.3                               | 0.50             | 0.2         | 0.8           |
|          | Spur Dikes               | 2                                            | 0                | 0                                 | 2                | 0.5                                          | 0.25             | 0.3                               | 0.50             | 1.1         | 1.1           |
|          | Localized Excavation     | 2                                            | 0                | 2                                 | 0                | 0.5                                          | 0                | 0.5                               | 0.00             | 2.0         | 0.0           |
|          | Short Channel Excavation | 3                                            | 0                | 3                                 | 0                | 0.75                                         | 0                | 0.5                               | 0.00             | 2.9         | 0.0           |
| 9        | Long Channel Excavation  | 8                                            | 0                | 10                                | 0                | 2                                            | 0                | 1.8                               | 0.00             | 8.7         | 0.0           |
|          | Island Destabilization   | 3                                            | 0                | 7                                 | 0                | 0.75                                         | 0.5              | 1.0                               | 0.00             | 4.7         | 0.2           |
|          | Spur Dikes               | 1                                            | 0                | 1                                 | 0                | 0.25                                         | 0.5              | 0.5                               | 0.25             | 1.1         | 0.3           |

### Table Q.1. Scoring of benefits and consequences related to reduction to water-surface elevation.



| Problem  | Comment                   | Alternative Condition    | General Change<br>(Salinity Effects) |         | Change at Drains |         | Change at<br>Restoration Sites |          | Net Score |         |
|----------|---------------------------|--------------------------|--------------------------------------|---------|------------------|---------|--------------------------------|----------|-----------|---------|
| Location |                           | Alternative Condition    |                                      | _       |                  | _       |                                |          | Net       | Net     |
|          |                           |                          | Benefit                              | Conseq. | Benefit          | Conseq. | Benefit                        | Conseq.  | Benefit   | Conseq. |
|          |                           | Localized Excavation     | 6                                    | 0       | 0                | 0       | 0                              | 0        | 2.0       | 0.0     |
|          | No Drains,                | Short Channel Excavation | 7                                    | 0       | 0                | 0       | 0                              | 0        | 2.3       | 0.0     |
| 1        | No Rest.                  | Long Channel Excavation  | 9                                    | 0       | 0                | 0       | 0                              | 0        | 3.0       | 0.0     |
|          | Sites                     | Modified Vortex Weir     | 4                                    | 0       | 0                | 0       | 0                              | 0        | 1.3       | 0.0     |
|          |                           | Sediment Traps           | 9                                    | 0       | 0                | 0       | 0                              | 0        | 3.0       | 0.0     |
|          |                           | Localized Excavation     | 4                                    | 0       | 4                | 0       | 0                              | 4        | 2.7       | 1.3     |
|          | Drains &                  | Short Channel Excavation | 7                                    | 0       | 7                | 0       | 0                              | 7        | 4.7       | 2.3     |
| 2        | Post Sitos                | Long Channel Excavation  | 8                                    | 0       | 8                | 0       | 0                              | 8        | 5.3       | 2.7     |
|          | Rest. Siles               | Island Destabilization   | 8                                    | 0       | 8                | 0       | 0                              | 8        | 5.3       | 2.7     |
|          |                           | Sediment Traps           | 8                                    | 0       | 8                | 0       | 0                              | 8        | 5.3       | 2.7     |
|          |                           | Localized Excavation     | 3                                    | 0       | 3                | 0       | 0                              | 3        | 2.0       | 1.0     |
|          | Draina 8                  | Short Channel Excavation | 4                                    | 0       | 4                | 0       | 0                              | 4        | 2.7       | 1.3     |
| 3        | Drains &                  | Long Channel Excavation  | 4                                    | 0       | 4                | 0       | 0                              | 4        | 2.7       | 1.3     |
|          | Rest. Sites               | Remove Siphon            | 10                                   | 0       | 10               | 0       | 0                              | 10       | 6.7       | 3.3     |
|          |                           | Sediment Traps           | 1                                    | 0       | 1                | 0       | 0                              | 1        | 0.7       | 0.3     |
|          |                           | Localized Excavation     | 4                                    | 0       | 4                | 0       | 0                              | 0        | 2.7       | 0.0     |
|          |                           | Short Channel Excavation | 4                                    | 0       | 4                | 0       | 0                              | 0        | 2.7       | 0.0     |
| 4        | Drains, No<br>Rest. Sites | Long Channel Excavation  |                                      | 0       | . 8              | 0       | 0                              | 0        | 5.3       | 0.0     |
|          |                           | Island Destabilization   | 0                                    | 2       | 0                | 2       | 0<br>0                         | 0<br>0   | 0.0       | 1.3     |
|          |                           | Spur Dikes               | 0                                    | 1       | Õ                | 1       | Õ                              | Õ        | 0.0       | 0.7     |
|          |                           |                          | 4                                    | 0       | 4                | 0       | 0                              | 4        | 2.7       | 13      |
|          | Drains &<br>Rest. Sites   | Short Channel Excavation |                                      | 0       | -<br>-<br>-      | 0       | 0                              |          | 2.7       | 1.5     |
| 5        |                           | Long Channel Excavation  | <u>8</u>                             | 0       | 8                | 0       | 0                              | <u> </u> | 53        | 27      |
| 5        |                           | Spur Dikos               | 0                                    | 1       | 0                | 1       | 1                              | 0        | 0.3       | 2.7     |
|          |                           | Sodimont Trans           | 1                                    | ۱<br>۵  | 4                | ۱<br>٥  | ۱<br>۵                         | U        | 0.3       | 0.7     |
|          | Draina 8                  | Sediment Traps           | 4                                    | 0       | 4                | 0       | 0                              | 4        | 2.1       | 1.5     |
| 6        |                           | Short Channel Excavation | 1                                    | 0       | 1                | 0       | 0                              | 1        | 0.7       | 0.3     |
|          | Rest. Sites               | Long Channel Excavation  | 0                                    | 1       | 0                | 1       | 1                              | 0        | 0.3       | 0.7     |
|          |                           | Localized Excavation     | 0                                    | 2       | 0                | 2       | 2                              | 0        | 0.7       | 1.3     |
| _        | Drains &                  | Short Channel Excavation | 3                                    | 0       | 3                | 0       | 0                              | 3        | 2.0       | 1.0     |
| (        | Rest. Sites               | Long Channel Excavation  | 4                                    | 0       | 4                | 0       | 0                              | 4        | 2.7       | 1.3     |
|          |                           | Spur Dikes               | 0                                    | 5       | 0                | 5       | 5                              | 0        | 1.7       | 3.3     |
|          |                           | Sediment Traps           | 6                                    | 0       | 6                | 0       | 0                              | 6        | 4.0       | 2.0     |
|          |                           | Localized Excavation     | 4                                    | 0       | 0                | 0       | 0                              | 4        | 1.3       | 1.3     |
|          | No Drains.                | Short Channel Excavation | 4                                    | 0       | 0                | 0       | 0                              | 4        | 1.3       | 1.3     |
| 8        | Rest. Sites               | Long Channel Excavation  | 4                                    | 0       | 0                | 0       | 0                              | 4        | 1.3       | 1.3     |
|          |                           | Riprap                   | 0                                    | 1       | 0                | 0       | 1                              | 0        | 0.3       | 0.3     |
|          |                           | Spur Dikes               | 2                                    | 0       | 0                | 0       | 0                              | 2        | 0.7       | 0.7     |
|          |                           | Localized Excavation     | 2                                    | 0       | 2                | 0       | 0                              | 0        | 1.3       | 0.0     |
|          | Drain, No                 | Short Channel Excavation | 3                                    | 0       | 3                | 0       | 0                              | 0        | 2.0       | 0.0     |
| 9        | Rest. Sites               | Long Channel Excavation  | 8                                    | 0       | 8                | 0       | 0                              | 0        | 5.3       | 0.0     |
|          |                           | Island Destabilization   | 3                                    | 0       | 3                | 0       | 0                              | 0        | 2.0       | 0.0     |
|          |                           | Spur Dikes               | 1                                    | 0       | 1                | 0       | 0                              | 0        | 0.7       | 0.0     |

Table Q.2. Scoring of benefits and consequences related to reduction to groundwater level.

| Problem  | Alternative Condition    | Aggradation Within<br>Extent of Problem<br>Location |                  | Aggradation over<br>Model Reach |                  | Cumulative<br>Downstream<br>Sediment Load |                  | Net Score      |                |
|----------|--------------------------|-----------------------------------------------------|------------------|---------------------------------|------------------|-------------------------------------------|------------------|----------------|----------------|
| Location |                          | Benefit<br>Score                                    | Conseq.<br>Score | Benefit<br>Score                | Conseq.<br>Score | Benefit<br>Score                          | Conseq.<br>Score | Net<br>Benefit | Net<br>Conseq. |
|          | Localized Excavation     | 3                                                   | 0                | 2                               | 0                | 0                                         | 3.5              | 2.0            | 1.4            |
|          | Short Channel Excavation | 2                                                   | 0                | 2                               | 0                | 0                                         | 3.5              | 1.6            | 1.4            |
| 1        | Long Channel Excavation  | 3                                                   | 0                | 3                               | 0                | 0                                         | 5                | 2.4            | 2.0            |
|          | Modified Vortex Weir     | 1                                                   | 0                | 1                               | 0                | 0                                         | 0.5              | 0.8            | 0.2            |
|          | Sediment Traps           | 8                                                   | 0                | 7                               | 0                | 0                                         | 4.5              | 6.0            | 1.8            |
|          | Localized Excavation     | 3                                                   | 0                | 3                               | 0                | 0                                         | 3                | 2.4            | 1.2            |
|          | Short Channel Excavation | 5                                                   | 0                | 3                               | 0                | 0                                         | 4.5              | 3.2            | 1.8            |
| 2        | Long Channel Excavation  | 3                                                   | 0                | 3                               | 0                | 0                                         | 4                | 2.4            | 1.6            |
|          | Island Destabilization   | 1                                                   | 0                | 0                               | 1                | 2                                         | 0                | 1.2            | 0.4            |
|          | Sediment Traps           | 9                                                   | 0                | 9                               | 0                | 0                                         | 5                | 7.2            | 2.0            |
|          | Localized Excavation     | 7                                                   | 0                | 2                               | 0                | 0                                         | 1.5              | 3.6            | 0.6            |
|          | Short Channel Excavation | 0                                                   | 4                | 0                               | 1                | 1                                         | 0                | 0.4            | 2.0            |
| 3        | Long Channel Excavation  | 0                                                   | 10               | 0                               | 2                | 1.5                                       | 0                | 0.6            | 4.8            |
|          | Remove Siphon            | 10                                                  | 0                | 2                               | 0                | 0                                         | 3.5              | 4.8            | 1.4            |
|          | Sediment Traps           | 8                                                   | 0                | 4                               | 0                | 0                                         | 0.5              | 4.8            | 0.2            |
|          | Localized Excavation     | 0                                                   | 1                | 1                               | 0                | 0                                         | 1                | 0.4            | 0.8            |
|          | Short Channel Excavation | 0                                                   | 3                | 0                               | 1                | 0.5                                       | 0                | 0.2            | 1.6            |
| 4        | Long Channel Excavation  | 0                                                   | 5                | 0                               | 2                | 2                                         | 0                | 0.8            | 2.8            |
|          | Island Destabilization   | 0                                                   | 1                | 0                               | 1                | 1                                         | 0                | 0.4            | 0.8            |
|          | Spur Dikes               | 2                                                   | 0                | 1                               | 0                | 0                                         | 0.5              | 1.2            | 0.2            |
|          | Localized Excavation     | 0                                                   | 7                | 0                               | 3                | 1                                         | 0                | 0.4            | 4.0            |
|          | Short Channel Excavation | 0                                                   | 7                | 1                               | 0                | 0                                         | 0.5              | 0.4            | 3.0            |
| 5        | Long Channel Excavation  | 0                                                   | 10               | 0                               | 7                | 3                                         | 0                | 1.2            | 6.8            |
|          | Spur Dikes               | 3                                                   | 0                | 1                               | 0                | 0                                         | 0.5              | 1.6            | 0.2            |
|          | Sediment Traps           | 4                                                   | 0                | 5                               | 0                | 0                                         | 0.5              | 3.6            | 0.2            |
| 0        | Short Channel Excavation | 0                                                   | 5                | 0                               | 4                | 1.5                                       | 0                | 0.6            | 3.6            |
| 6        | Long Channel Excavation  | 0                                                   | 7                | 0                               | 6                | 1.5                                       | 0                | 0.6            | 5.2            |
|          | Localized Excavation     | 0                                                   | 3                | 1                               | 0                | 0                                         | 0.5              | 0.4            | 1.4            |
|          | Short Channel Excavation | 0                                                   | 7                | 1                               | 0                | 0                                         | 0.5              | 0.4            | 3.0            |
| 7        | Long Channel Excavation  | 0                                                   | 7                | 2                               | 0                | 0                                         | 0.5              | 0.8            | 3.0            |
|          | Spur Dikes               | 4                                                   | 0                | 3                               | 0                | 0                                         | 0.5              | 2.8            | 0.2            |
|          | Sediment Traps           | 9                                                   | 0                | 10                              | 0                | 0                                         | 2.5              | 7.6            | 1.0            |
| -        | Localized Excavation     | 0                                                   | 7                | 0                               | 3                | 1.5                                       | 0                | 0.6            | 4.0            |
|          | Short Channel Excavation | 0                                                   | 9                | 0                               | 4                | 2                                         | 0                | 0.8            | 5.2            |
| 8        | Long Channel Excavation  | 0                                                   | 10               | 0                               | 6                | 3                                         | 0                | 1.2            | 6.4            |
| Ĵ        | Riprap                   | 1                                                   | 0                | 1                               | 0                | 0                                         | 0.5              | 0.8            | 0.2            |
|          | Spur Dikes               | 3                                                   | 0                | 0                               | 5                | 2                                         | 0                | 2.0            | 2.0            |
| -        | Localized Excavation     | 0                                                   | 3                | 0                               | 1                | 1.5                                       | 0                | 0.6            | 1.6            |
|          | Short Channel Excavation | 0                                                   | 3                | 0                               | 1                | 2                                         | 0                | 0.8            | 1.6            |
| 9        | Long Channel Excavation  | 0                                                   | 6                | 0                               | 4                | 5                                         | 0                | 2.0            | 4.0            |
|          | Island Destabilization   | 0                                                   | 2                | 0                               | 1                | 2                                         | 0                | 0.8            | 1.2            |
|          | Spur Dikes               | 0                                                   | 1                | 1                               | 0                | 0                                         | 1                | 0.4            | 0.8            |

# Table Q.3.Scoring of benefits and consequences related to aggradation/degradation and<br/>sediment loading.

| Problem<br>Location | Comment                   | Alternative Condition    | Initial<br>WSE<br>Change<br>Score | Long-<br>term<br>WSE<br>Change<br>Score | Net<br>Benefit<br>Score |
|---------------------|---------------------------|--------------------------|-----------------------------------|-----------------------------------------|-------------------------|
|                     |                           | Localized Excavation     | 0                                 | 0                                       | 0.0                     |
|                     | No Drains,                | Short Channel Excavation | 0                                 | 0                                       | 0.0                     |
| 1                   | No Rest.                  | Long Channel Excavation  | 0                                 | 0                                       | 0.0                     |
|                     | Sites                     | Modified Vortex Weir     | 0                                 | 0                                       | 0.0                     |
|                     |                           | Sediment Traps           | 0                                 | 0                                       | 0.0                     |
|                     |                           | Localized Excavation     | 4                                 | 4                                       | 4.0                     |
|                     | Draina 8                  | Short Channel Excavation | 7                                 | 5                                       | 6.0                     |
| 2                   | Drains &                  | Long Channel Excavation  | 8                                 | 7                                       | 7.5                     |
|                     | Rest. Siles               | Island Destabilization   | 8                                 | 3                                       | 5.5                     |
|                     |                           | Sediment Traps           | 8                                 | 0                                       | 4.0                     |
|                     |                           | Localized Excavation     | 3                                 | 6                                       | 4.5                     |
|                     | Draine &                  | Short Channel Excavation | 4                                 | 7                                       | 5.5                     |
| 3                   | Rost Sitos                | Long Channel Excavation  | 4                                 | 8                                       | 6.0                     |
|                     | Rest. Siles               | Remove Siphon            | 10                                | 8                                       | 9.0                     |
|                     |                           | Sediment Traps           | 1                                 | 0                                       | 0.5                     |
|                     | Drains, No<br>Rest. Sites | Localized Excavation     | 4                                 | 4                                       | 4.0                     |
|                     |                           | Short Channel Excavation | 4                                 | 5                                       | 4.5                     |
| 4                   |                           | Long Channel Excavation  | 8                                 | 9                                       | 8.5                     |
|                     |                           | Island Destabilization   | 0                                 | 0                                       | 0.0                     |
|                     |                           | Spur Dikes               | 0                                 | 0                                       | 0.0                     |
|                     | Drains &<br>Rest. Sites   | Localized Excavation     | 4                                 | 4                                       | 4.0                     |
|                     |                           | Short Channel Excavation | 5                                 | 5                                       | 5.0                     |
| 5                   |                           | Long Channel Excavation  | 8                                 | 8                                       | 8.0                     |
|                     |                           | Spur Dikes               | 0                                 | 0                                       | 0.0                     |
|                     |                           | Sediment Traps           | 4                                 | 0                                       | 2.0                     |
| <u> </u>            | Drains &                  | Short Channel Excavation | 1                                 | 7                                       | 4.0                     |
| 6                   | Rest. Sites               | Long Channel Excavation  | 0                                 | 8                                       | 4.0                     |
|                     |                           | Localized Excavation     | 0                                 | 2                                       | 1.0                     |
|                     | <b>D</b> ·                | Short Channel Excavation | 3                                 | 5                                       | 4.0                     |
| 7                   | Drains &                  | Long Channel Excavation  | 4                                 | 6                                       | 5.0                     |
|                     | Rest. Sites               | Spur Dikes               | 0                                 | 0                                       | 0.0                     |
|                     |                           | Sediment Traps           | 6                                 | 0                                       | 3.0                     |
|                     |                           | Localized Excavation     | 0                                 | 0                                       | 0.0                     |
|                     |                           | Short Channel Excavation | 0                                 | 0                                       | 0.0                     |
| 8                   | No Drains,                | Long Channel Excavation  | 0                                 | 0                                       | 0.0                     |
|                     | ivesi. Siles              | Riprap                   | 0                                 | 0                                       | 0.0                     |
|                     |                           | Spur Dikes               | 0                                 | 0                                       | 0.0                     |
|                     |                           | Localized Excavation     | 2                                 | 4                                       | 3.0                     |
|                     |                           | Short Channel Excavation | 3                                 | 5                                       | 4.0                     |
| 9                   | Drain, NO                 | Long Channel Excavation  | 8                                 | 9                                       | 8.5                     |
|                     | ivesi. Siles              | Island Destabilization   | 3                                 | 4                                       | 3.5                     |
|                     |                           | Spur Dikes               | 1                                 | 0                                       | 0.5                     |

Table Q.4. Scoring of benefits related to improved irrigation return flows.



| Problem<br>Location | Alternative Condition    | Maintenance<br>Pd (yrs) | Benefit<br>Score |
|---------------------|--------------------------|-------------------------|------------------|
|                     | Localized Excavation     | 1.6                     | 2.0              |
| 1                   | Short Channel Excavation | 3.5                     | 4.0              |
|                     | Long Channel Excavation  | 5.6                     | 6.0              |
|                     | Modified Vortex Weir     | 10.0                    | 9.0              |
|                     | Sediment Traps           | 2.9                     | 3.0              |
|                     | Localized Excavation     | 7.5                     | 7.0              |
|                     | Short Channel Excavation | 9.1                     | 8.0              |
| 2                   | Long Channel Excavation  | 10.3                    | 9.0              |
|                     | Island Destabilization   | 4.0                     | 5.0              |
|                     | Sediment Traps           | 6.2                     | 7.0              |
|                     | Localized Excavation     | 7.8                     | 7.0              |
|                     | Short Channel Excavation | 8.8                     | 8.0              |
| 3                   | Long Channel Excavation  | 9.7                     | 8.0              |
|                     | Remove Siphon            | 2.0                     | 3.0              |
|                     | Sediment Traps           | 4.0                     | 5.0              |
|                     | Localized Excavation     | 2.7                     | 3.0              |
|                     | Short Channel Excavation | 2.7                     | 3.0              |
| 4                   | Long Channel Excavation  | 9.7                     | 8.0              |
|                     | Island Destabilization   | 4.0                     | 5.0              |
|                     | Spur Dikes               | 3.0                     | 4.0              |
|                     | Localized Excavation     | 10.9                    | 9.0              |
|                     | Short Channel Excavation | 13.7                    | 9.0              |
| 5                   | Long Channel Excavation  | 27.7                    | 10.0             |
|                     | Spur Dikes               | 3.0                     | 4.0              |
|                     | Sediment Traps           | 12.1                    | 9.0              |
|                     | Short Channel Excavation | 0.7                     | 1.0              |
|                     | Long Channel Excavation  | 6.7                     | 7.0              |
| 6                   | Sluiceway and Check Stru | 1.0                     | 2.0              |
|                     | Gate Automation          | 1.0                     | 2.0              |
|                     | Vortex Tubes             | 1.0                     | 2.0              |
|                     | Localized Excavation     | 2.7                     | 3.0              |
|                     | Short Channel Excavation | 7.6                     | 7.0              |
| 7                   | Long Channel Excavation  | 8.7                     | 8.0              |
|                     | Spur Dikes               | 3.0                     | 4.0              |
|                     | Sediment Traps           | 4.3                     | 5.0              |
|                     | Localized Excavation     | 1.7                     | 2.0              |
|                     | Short Channel Excavation | 2.7                     | 3.0              |
| 8                   | Long Channel Excavation  | 4.7                     | 5.0              |
|                     | Riprap                   | 10.0                    | 9.0              |
|                     | Spur Dikes               | 3.0                     | 4.0              |
|                     | Localized Excavation     | 0.7                     | 1.0              |
|                     | Short Channel Excavation | 3.8                     | 4.0              |
| 9                   | Long Channel Excavation  | 10.4                    | 9.0              |
| _                   | Island Destabilization   | 4.0                     | 5.0              |
|                     | Spur Dikes               | 3.0                     | 4.0              |

Table Q.5. Scoring of durability benefits.



| Problem  | Alt Departmen                               | Annual Project | Cost  |
|----------|---------------------------------------------|----------------|-------|
| Location | Ait. Description                            | Cost           | Score |
| 1        | Channel Excavation (Short)                  | \$ 157,300     | 2.1   |
| 1        | Channel Excavation (Long)                   | \$ 253,300     | 3.4   |
| 1        | Channel Excavation (Localized)              | \$ 103,300     | 1.4   |
| 1        | Sediment Traps in Arroyos                   | \$ 285,000     | 3.9   |
| 1        | Modification of the TB Vortex Weir          | \$ 4,100       | 0.0   |
| 2        | Channel Excavation (Short)                  | \$ 264,000     | 3.6   |
| 2        | Channel Excavation (Long)                   | \$ 389,200     | 5.3   |
| 2        | Channel Excavation (Localized)              | \$ 181,500     | 2.4   |
| 2        | Sediment Traps in Arroyos                   | \$ 90,600      | 1.2   |
| 2        | Island Destabilization / Vegetation Removal | \$ 77,000      | 1.0   |
| 3        | Channel Excavation (Short)                  | \$ 58,500      | 0.8   |
| 3        | Channel Excavation (Long)                   | \$ 108,500     | 1.4   |
| 3        | Channel Excavation (Localized)              | \$ 44,600      | 0.6   |
| 3        | Sediment Traps in Arroyos                   | \$ 14,100      | 0.1   |
| 3        | Replace Rincon Siphon with Flume            | \$ 100,400     | 1.3   |
| 4        | Channel Excavation (Short)                  | \$ 656,800     | 9.0   |
| 4        | Channel Excavation (Long)                   | \$ 653,500     | 9.0   |
| 4        | Channel Excavation (Localized)              | \$ 382,600     | 5.2   |
| 4        | Island Destabilization / Spur Dikes         | \$ 97,500      | 1.3   |
| 4        | Low-Elevation Spur Dikes                    | \$ 64,800      | 0.8   |
| 5        | Channel Excavation (Short)                  | \$ 304,500     | 4.1   |
| 5        | Channel Excavation (Long)                   | \$ 269,500     | 3.7   |
| 5        | Channel Excavation (Localized)              | \$ 325,200     | 4.4   |
| 5        | Sediment Traps in Arroyos                   | \$ 175,900     | 2.4   |
| 5        | Low-Elevation Spur Dikes                    | \$ 222,300     | 3.0   |
| 6        | Channel Excavation (Short)                  | \$ 1,299,100   | 10.0  |
| 6        | Channel Excavation (Long)                   | \$ 247,600     | 3.4   |
| 6        | New Check/Sluice Structures in Canals       | \$ 154,800     | 2.1   |
| 6        | Mesilla Dam Gate Automation                 | \$ 164,200     | 2.2   |
| 6        | Installation of Vortex Tubes                | \$ 25,100      | 0.3   |
| 7        | Channel Excavation (Short)                  | \$ 147,900     | 2.0   |
| 7        | Channel Excavation (Long)                   | \$ 164,800     | 2.2   |
| 7        | Channel Excavation (Localized)              | \$ 44,700      | 0.6   |
| 7        | Sediment Traps in Arroyos                   | \$ 77,500      | 1.0   |
| 7        | Low-Elevation Spur Dikes                    | \$ 70,900      | 0.9   |
| 8        | Channel Excavation (Short)                  | \$ 217,000     | 2.9   |
| 8        | Channel Excavation (Long)                   | \$ 248,800     | 3.4   |
| 8        | Channel Excavation (Localized)              | \$ 139,800     | 1.9   |
| 8        | Riprap in Narrow Floodplain Areas           | \$ 28,300      | 0.3   |
| 8        | Low-Elevation Spur Dikes                    | \$ 34,200      | 0.4   |
| 9        | Channel Excavation (Short)                  | \$ 271,900     | 3.7   |
| 9        | Channel Excavation (Long)                   | \$ 534,700     | 7.3   |
| 9        | Channel Excavation (Localized)              | \$ 572,800     | 7.8   |
| 9        | Island Destabilization / Vegetation Removal | \$ 32,300      | 0.4   |
| 9        | Low-Elevation Spur Dikes                    | \$ 26,100      | 0.3   |

Table Q.6. Scoring of total annualized project costs.



| Problem  | Alternative Condition    | Average Change in<br>Left Levee Freeboard |                  | Average Change in<br>Right Levee Freeboard |                  | Maximum Change in<br>Left Levee Freeboard |                  | Maximum Change in<br>Right Levee Freeboard |                  | Net benefit | Net<br>Conse- |
|----------|--------------------------|-------------------------------------------|------------------|--------------------------------------------|------------------|-------------------------------------------|------------------|--------------------------------------------|------------------|-------------|---------------|
| Location |                          | Benefit<br>Score                          | Conseq.<br>Score | Benefit<br>Score                           | Conseq.<br>Score | Benefit<br>Score                          | Conseq.<br>Score | Benefit<br>Score                           | Conseq.<br>Score |             | quence        |
|          | Localized Excavation     | 0                                         | 0                | 0                                          | 0                | 0                                         | 0                | 0                                          | 0                | 0           | 0             |
|          | Short Channel Excavation | 0                                         | 0                | 0                                          | 0                | 0                                         | 0                | 0                                          | 0                | 0           | 0             |
| 1        | Long Channel Excavation  | 0                                         | 0                | 0                                          | 0                | 0                                         | 0                | 0                                          | 0                | 0           | 0             |
|          | Modified Vortex Weir     | 0                                         | 0                | 0                                          | 0                | 0                                         | 0                | 0                                          | 0                | 0           | 0             |
|          | Sediment Traps           | 0                                         | 0                | 0                                          | 0                | 0                                         | 0                | 0                                          | 0                | 0           | 0             |
|          | Localized Excavation     | 5                                         | 0                | 8                                          | 0                | 1.75                                      | 1.5              | 2.25                                       | 0.5              | 6.8         | 0.8           |
|          | Short Channel Excavation | 7                                         | 0                | 10                                         | 0                | 2.25                                      | 0.5              | 2.5                                        | 0                | 8.7         | 0.2           |
| 2        | Long Channel Excavation  | 8                                         | 0                | 10                                         | 0                | 2.5                                       | 0.5              | 2.5                                        | 0                | 9.2         | 0.2           |
|          | Island Destabilization   | 3                                         | 0                | 0                                          | 1                | 0.75                                      | 0.75             | 0.5                                        | 0.5              | 1.7         | 0.9           |
|          | Sediment Traps           | 7                                         | 0                | 9                                          | 0                | 2                                         | 0                | 2.25                                       | 0                | 8.1         | 0             |
|          | Localized Excavation     | 0                                         | 0                | 6                                          | 0                | 0                                         | 0                | 1.25                                       | 0                | 2.9         | 0             |
|          | Short Channel Excavation | 0                                         | 0                | 7                                          | 0                | 0                                         | 0                | 1.5                                        | 0                | 3.4         | 0             |
| 3        | Long Channel Excavation  | 0                                         | 0                | 7                                          | 0                | 0                                         | 0                | 1.5                                        | 0                | 3.4         | 0             |
|          | Remove Siphon            | 0                                         | 0                | 10                                         | 0                | 0                                         | 0                | 2.25                                       | 0                | 4.9         | 0             |
|          | Sediment Traps           | 0                                         | 0                | 3                                          | 0                | 0                                         | 0                | 1                                          | 0                | 1.6         | 0             |
|          | Localized Excavation     | 4                                         | 0                | 5                                          | 0                | 1.5                                       | 0                | 1                                          | 0                | 4.6         | 0             |
|          | Short Channel Excavation | 5                                         | 0                | 6                                          | 0                | 1.5                                       | 0.5              | 1.25                                       | 0                | 5.5         | 0.2           |
| 4        | Long Channel Excavation  | 8                                         | 0                | 7                                          | 0                | 2                                         | 0                | 1.5                                        | 0                | 7.4         | 0             |
|          | Island Destabilization   | 5                                         | 0                | 3                                          | 0                | 1.5                                       | 0                | 0.5                                        | 0                | 4           | 0             |
|          | Spur Dikes               | 0                                         | 3                | 3                                          | 0                | 0.75                                      | 1.5              | 0.5                                        | 0                | 1.7         | 1.8           |
|          | Localized Excavation     | 0                                         | 0                | 0                                          | 0                | 0                                         | 0                | 0                                          | 0                | 0           | 0             |
|          | Short Channel Excavation | 0                                         | 0                | 0                                          | 0                | 0                                         | 0                | 0                                          | 0                | 0           | 0             |
| 5        | Long Channel Excavation  | 0                                         | 0                | 0                                          | 0                | 0                                         | 0                | 0                                          | 0                | 0           | 0             |
|          | Spur Dikes               | 0                                         | 0                | 0                                          | 0                | 0                                         | 0                | 0                                          | 0                | 0           | 0             |
|          | Sediment Traps           | 0                                         | 0                | 0                                          | 0                | 0                                         | 0                | 0                                          | 0                | 0           | 0             |
| 6        | Short Channel Excavation | 0                                         | 3                | 0                                          | 0                | 0                                         | 0.75             | 0                                          | 0                | 0           | 1.5           |
| -        | Long Channel Excavation  | 0                                         | 3                | 0                                          | 0                | 0                                         | 1                | 0                                          | 0                | 0           | 1.6           |
|          | Localized Excavation     | 0                                         | 3                | 0                                          | 3                | 0                                         | 0.5              | 0                                          | 0.5              | 0           | 2.8           |
|          | Short Channel Excavation | 3                                         | 0                | 3                                          | 0                | 0.5                                       | 0                | 0.75                                       | 0                | 2.9         | 0             |
| 7        | Long Channel Excavation  | 5                                         | 0                | 5                                          | 0                | 1                                         | 0                | 1                                          | 0                | 4.8         | 0             |
|          | Spur Dikes               | 0                                         | 6                | 0                                          | 6                | 0                                         | 1.5              | 0                                          | 1.5              | 0           | 6             |
|          | Sediment Traps           | 6                                         | 0                | 6                                          | 0                | 1.25                                      | 0                | 1.25                                       | 0                | 5.8         | 0             |
|          | Localized Excavation     | 4                                         | 0                | 3                                          | 0                | 1                                         | 0                | 1                                          | 0                | 3.6         | 0             |
|          | Short Channel Excavation | 4                                         | 0                | 4                                          | 0                | 1.25                                      | 0                | 1.25                                       | 0                | 4.2         | 0             |
| 8        | Long Channel Excavation  | 4                                         | 0                | 3                                          | 0                | 1                                         | 0                | 1                                          | 0                | 3.6         | 0             |
|          | Riprap                   | 0                                         | 3                | 0                                          | 3                | 0                                         | 0.5              | 0.5                                        | 0.5              | 0.2         | 2.8           |
|          | Spur Dikes               | 0                                         | 3                | 0                                          | 3                | 0 75                                      | 0.5              | 0.5                                        | 0.5              | 0.2         | 2.8           |
|          | Localized Excavation     | 3                                         | 0                | 3                                          | 0                | 0.75                                      | 0                | 0.75                                       | 0                | 3           | 0             |
|          | Short Channel Excavation | 5                                         | 0                | 3                                          | 0                | 1.25                                      | 0                | 1.25                                       | 0                | 4.2         | 0             |
| 9        | Long Channel Excavation  | 8                                         | 0                | 8<br>F                                     | 0                | 1.75                                      | 0                | 1.5                                        | 0                | 7.9         | 0             |
|          | Sidnu Destabilization    | 0                                         | 0                | 5                                          | 0                | 0.75                                      | 0.5              | 1.5                                        | 0.5              | 0.0         | 1.6           |
| 1        | Opul Dikes               | 3                                         | 0                | 0                                          | 3                | 0.75                                      | 0.5              | 0.5                                        | 0.5              | 1.7         | 1.0           |

### Table Q.7. Scoring of benefits and consequences related to levee freeboard.



| Problem<br>Location | Alternative Condition    | Max.<br>Shear<br>Increase<br>(psf) | Conseq.<br>Score |
|---------------------|--------------------------|------------------------------------|------------------|
|                     | Localized Excavation     | 1.2                                | 10.0             |
|                     | Short Channel Excavation | 0.5                                | 6.0              |
| 1                   | Long Channel Excavation  | 0.2                                | 3.0              |
|                     | Modified Vortex Weir     | 0.3                                | 3.0              |
|                     | Sediment Traps           | 0.7                                | 8.0              |
|                     | Localized Excavation     | 0.4                                | 4.0              |
|                     | Short Channel Excavation | 0.2                                | 2.0              |
| 2                   | Long Channel Excavation  | 0.4                                | 5.0              |
|                     | Island Destabilization   | 0.4                                | 5.0              |
|                     | Sediment Traps           | 0.0                                | 0.0              |
|                     | Localized Excavation     | 0.1                                | 2.0              |
|                     | Short Channel Excavation | 0.2                                | 2.0              |
| 3                   | Long Channel Excavation  | 0.1                                | 1.0              |
|                     | Remove Siphon            | 1.5                                | 10.0             |
|                     | Sediment Traps           | 0.04                               | 0.0              |
|                     | Localized Excavation     | 0.0                                | 0.0              |
|                     | Short Channel Excavation | 0.5                                | 5.0              |
| 4                   | Long Channel Excavation  | 0.2                                | 2.0              |
|                     | Island Destabilization   | 0.1                                | 1.0              |
|                     | Spur Dikes               | 0.3                                | 4.0              |
|                     | Localized Excavation     | 0.1                                | 2.0              |
|                     | Short Channel Excavation | 0.1                                | 1.0              |
| 5                   | Long Channel Excavation  | 0.2                                | 2.0              |
|                     | Spur Dikes               | 0.0                                | 0.0              |
|                     | Sediment Traps           | 0.1                                | 2.0              |
|                     | Short Channel Excavation | 0.0                                | 0.0              |
|                     | Long Channel Excavation  | 0.0                                | 0.0              |
| 6                   | Sluiceway and Check Stru | 0.0                                | 0.0              |
|                     | Gate Automation          | 0.0                                | 0.0              |
|                     | Vortex Tubes             | 0.0                                | 0.0              |
|                     | Localized Excavation     | 0.6                                | 7.0              |
|                     | Short Channel Excavation | 0.0                                | 0.0              |
| 7                   | Long Channel Excavation  | 0.1                                | 2.0              |
|                     | Spur Dikes               | 0.1                                | 1.0              |
|                     | Sediment Traps           | 0.3                                | 3.0              |
|                     | Localized Excavation     | 0.0                                | 0.0              |
|                     | Short Channel Excavation | 0.0                                | 0.0              |
| 8                   | Long Channel Excavation  | 0.0                                | 0.0              |
|                     | Riprap                   | 0.0                                | 0.0              |
|                     | Spur Dikes               | 0.0                                | 0.0              |
|                     | Localized Excavation     | 0.0                                | 0.0              |
|                     | Short Channel Excavation | 0.1                                | 1.0              |
| 9                   | Long Channel Excavation  | 0.1                                | 2.0              |
|                     | Island Destabilization   | 0.0                                | 0.0              |
|                     | Spur Dikes               | 0.0                                | 0.0              |

Table Q.8. Scoring of increased bank erosion potential.


| Problem<br>Location | Alternative Condition    | Additional<br>Restoration<br>Benefits | Additional Site<br>Specific<br>Benefits | Additional<br>Restoration<br>Consequences | Additional Site<br>Specific<br>Consequences |
|---------------------|--------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------------|
| 1                   | Localized Excavation     | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Short Channel Excavation | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Long Channel Excavation  | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Modified Vortex Weir     | 0                                     | 7.5                                     | 0.0                                       | 0.0                                         |
|                     | Sediment Traps           | 5                                     | 0                                       | 0.0                                       | 0.0                                         |
| 2                   | Localized Excavation     | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Short Channel Excavation | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Long Channel Excavation  | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Island Destabilization   | 0                                     | 7.5                                     | 2.5                                       | 0.0                                         |
|                     | Sediment Traps           | 5                                     | 0                                       | 2.5                                       | 0.0                                         |
| 3                   | Localized Excavation     | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Short Channel Excavation | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Long Channel Excavation  | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Remove Siphon            | 2.5                                   | 0                                       | 7.5                                       | 10.0                                        |
|                     | Sediment Traps           | 5                                     | 0                                       | 0.0                                       | 0.0                                         |
| 4                   | Localized Excavation     | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Short Channel Excavation | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Long Channel Excavation  | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Island Destabilization   | 0                                     | 7.5                                     | 2.5                                       | 0.0                                         |
|                     | Spur Dikes               | 2.5                                   | 5                                       | 0.0                                       | 0.0                                         |
| 5                   | Localized Excavation     | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Short Channel Excavation | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Long Channel Excavation  | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Spur Dikes               | 2.5                                   | 5                                       | 0.0                                       | 0.0                                         |
|                     | Sediment Traps           | 5                                     | 0                                       | 0.0                                       | 0.0                                         |
| 6                   | Short Channel Excavation | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Long Channel Excavation  | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Sluiceway and Check Stru | 0                                     | 5                                       | 0.0                                       | 0.0                                         |
|                     | Gate Automation          | 0                                     | 10                                      | 0.0                                       | 0.0                                         |
|                     | Vortex Tubes             | 0                                     | 5                                       | 0.0                                       | 0.0                                         |
| 7                   | Localized Excavation     | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Short Channel Excavation | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Long Channel Excavation  | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Spur Dikes               | 2.5                                   | 5                                       | 0.0                                       | 0.0                                         |
|                     | Sediment Traps           | 5                                     | 0                                       | 0.0                                       | 0.0                                         |
| 8                   | Localized Excavation     | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Short Channel Excavation | 0                                     | 1                                       | 2.5                                       | 0.0                                         |
|                     | Long Channel Excavation  | 0                                     | 2                                       | 2.5                                       | 0.0                                         |
|                     | Riprap                   | 0                                     | 10                                      | 0.0                                       | 1.0                                         |
|                     | Spur Dikes               | 2.5                                   | 5                                       | 0.0                                       | 2.0                                         |
| 9                   | Localized Excavation     | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Short Channel Excavation | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Long Channel Excavation  | 0                                     | 0                                       | 2.5                                       | 0.0                                         |
|                     | Island Destabilization   | 0                                     | 7.5                                     | 2.5                                       | 0.0                                         |
|                     | Sour Dikes               | 25                                    | 5                                       | 25                                        | 0.0                                         |

Table Q.9. Scoring of additional restoration and site-specific benefits and consequences.



Channel Maintenance Alternatives and Sediment-transport Studies for the Rio Grande Canalization Project: Final Report

## **APPENDIX** R

**Digital Data Disc** 

